Journal of the American Chemical Society
COMMUNICATION
deceleration). This valuable observation suggests that, in com-
parison with the canonical iodine electrolyte, the cobalt counter-
part should endow a large chance of uplifting the ground-state
redox potential in the further design of low energy gap pushꢀpull
dyes to harvest near-infrared solar photons.
Yum, J.-H.; Ko, J.; Nazeeruddin, M. K.; Gr€atzel, M. Chem.—Eur. J. 2010,
16, 1193.
(5) Cai, N.; Moon, S.-J.; Cevey-Ha, L.; Moehl, T.; Humphy-Baker,
R.; Wang, P.; Zakeeruddin, S. M.; Gr€atzel, M. Nano Lett. 2011, 11, 1452.
(6) Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach,
U.; Spiccia, L. Nat. Chem. 2011, 3, 211.
To summarize, we have demonstrated an iodine-free dye-
sensitized solar cell exhibiting an unprecedented power conver-
sion efficiency of 9.4% at 100 mW cmꢀ2 simulated AM1.5G
conditions, based on a new organic pushꢀpull dye C229 in
conjunction with the tris(1,10-phenanthroline)cobalt(II/III) re-
dox shuttle. With respect to its C228 counterpart, the C229 dye,
when combined with the cobalt electrolyte, not only evokes a
red-shifted photocurrent response but concomitantly prompts a
Voc improvement, in sharp contrast to a Voc decrease for the
iodine control cells. This is further rationalized in terms of the
redox-couple-correlated dependence of dye structures on charge
recombination kinetics at the titania/electrolyte interface via a
joint electrical impedance and quantum calculation analysis. Our
work will shed light on further exploration of near-infrared-
absorption organic photosensitizers for more efficient iodine-free
mesoscopic titania solar cells.
(7) (a) Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo,
G.; Hagfeldt, A. J. Am. Chem. Soc. 2010, 132, 16714. (b) Zhou, D.; Yu,
Q.; Cai, N.; Bai, Y.; Wang, Y.; Wang, P. Energy Environ. Sci. 2011, 4, 2030.
(c) Zhang, M.; Liu, J.; Wang, Y.; Zhou, D.; Wang, P. Chem. Sci. 2011,
2, 1401. (d) Tsao, H. N.; Yi, C.; Moehl, T.; Yum, J.-H.; Zakeeruddin,
S. M.; Nazeeruddin, M. K.; Gr€atzel, M. ChemSusChem 2011, 4, 591.
(e) Liu, J.; Zhang, J.; Xu, M.; Zhou, D.; Jing, X.; Wang, P. Energy Environ.
Sci. 2011, doi: 10.1039/c1ee01633d.
(8) Bai, Y.; Yu, Q.; Cai, N.; Wang, Y.; Zhang, M.; Wang, P. Chem.
Commun. 2011, 47, 4376.
(9) Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761.
(10) (a) M€uhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller,
D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884. (b) Zhang, M.;
Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; M€ullen, K. J. Am. Chem.
Soc. 2007, 129, 3472.
(11) Li, R.; Liu, J.; Cai, N.; Zhang, M.; Wang, P. J. Phys. Chem. B
2010, 114, 4461.
(12) (a) Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360. (b)
Barea, E. M.; Ortiz, J.; Payꢀa, F. J.; Fernꢀandez-Lꢀazaro, F.; Fabregat-
Santiago, F.; Sastre-Santos, A.; Bisquert, J. Energy Environ. Sci. 2010,
3, 1985.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, impe-
(13) Bisquert, J. J. Phys. Chem. B 2002, 106, 325.
b
dance data analysis, and additional experimental data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(14) Barea, E. M.; Zafer, C.; Gultekin, B.; Aydin, B.; Koyuncu, S.; Icli,
S.; Fabregat-Santiago, F.; Bisquert, J. J. Phys. Chem. C 2010, 114, 19840.
(15) (a) Metrangolo, P.; Resnati, G. Chem.—Eur. J. 2001, 7, 2511.
(b) Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 16789. (c) Nguyen, H. L.; Horton, P. N.; Hursthouse,
M. B.; Legon, A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16.
(d) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res.
2005, 38, 386. (e) Sun, A.; Lauher, J. W.; Goroff, N. S. Science 2006,
312, 1030. (f) Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S.
J. Mol. Model. 2007, 13, 305. (g) Voth, A. R.; Khuu, P.; Oishi, K.; Ho, P. S.
Nat. Chem. 2009, 1, 74. (h) Legon, A. C. Phys. Chem. Chem. Phys. 2010,
12, 7736. (i) Metrangolo, P.; Resnati, G. Nat. Chem. 2011, 3, 260.
(16) (a) O’Regan, B. C.; Lꢀopez-Duarte, I.; Martínez-Díaz, M. V.;
Forneli, A.; Albero, J.; Morandeira, A.; Palomares, E.; Torres, T.;
Durrant, J. R. J. Am. Chem. Soc. 2008, 130, 2906. (b) Privalov, T.;
Boschloo, G.; Hagfeldt, A.; Svensson, P. H.; Kloo, L. J. Phys. Chem. C
2009, 113, 783. (c) Planells, M.; Pellejꢁa, L.; Clifford, J. N.; Pastore, M.;
De Angelis, F.; Loꢀpez, N.; Marder, S. R.; Palomares, E. Energy Environ.
Sci. 2011, 4, 1820.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
The National 973 Program (No. 2007CB936702 and No.
2011CBA00702), the National Science Foundation of China
(No. 50973105), the CAS Knowledge Innovation Program
(No. KGCX2-YW-326), and the CAS Hundred Talent Program
are acknowledged for financial support. We are grateful to Dyesol
for supplying the scattering paste and to DuPont Packaging and
Industrial Polymers for supplying the Bynel film.
(17) (a) O’Regan, B. C.; Durrant, J. R. Acc. Chem. Res. 2009,
42, 1799. (b) Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.
’ REFERENCES
(1) Gr€atzel, M. Acc. Chem. Res. 2009, 42, 1788.
(2) Nazeeruddin, M. K.; Pꢀechy, P.; Renouard, T.; Zakeeruddin,
S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.;
Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gr€atzel, M.
J. Am. Chem. Soc. 2001, 123, 1613.
(3) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han,
L. Jpn. J. Appl. Phys. 2006, 45, L638.
(4) For example, see: (a) Horiuchi, T.; Miura, H.; Sumioka, K.;
Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. (b) Kim, S.; Lee, J. K.;
Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci, S.; De Anglis, F.; Di Censo, D.;
Nazeeruddin, M. K.; Gr€atzel, M. J. Am. Chem. Soc. 2006, 128, 16701.
(c) Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara,
K. J. Am. Chem. Soc. 2006, 128, 14256. (d) Ito, S.; Miura, H.; Uchida, S.;
Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pꢀechy, P.; Gr€atzel, M.
Chem. Commun. 2008, 5194. (e) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.;
Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010,
22, 1915. (f) Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.;
11445
dx.doi.org/10.1021/ja203708k |J. Am. Chem. Soc. 2011, 133, 11442–11445