P. Cheruku, P. Tolstoy, J. Bergquist, S. F. Volker and
P. G. Andersson, Adv. Synth. Catal., 2009, 351, 375; (c) Y. Tsuchiya,
Y. Hamashima and M. Sodeoka, Org. Lett., 2006, 8, 4851;
(d) C. Benhaim, L. Bouchard, G. Pelletier, J. Sellstedt, L. Kristofova
and S. Daigneault, Org. Lett., 2010, 12, 2008; conjugate additions:
(e) T. Konno, T. Tanaka, T. Miyabe, A. Morigaki and T. Ishihara,
Tetrahedron Lett., 2008, 49, 2106; (f) L.-L. Wen, Q.-L. Shen and L. Lu,
Org. Lett., 2010, 12, 4655; (g) S. Ogawa, H. Yasui, E. Tokunaga,
S. Nakamura and N. Shibata, Chem. Lett., 2009, 1006; a-trifluoro-
methylation: (h) D. A. Nagib, M. E. Scott and D. W. C. MacMillan,
J. Am. Chem. Soc., 2009, 131, 10875; (i) A. E. Allen and D. W.
C. MacMillan, J. Am. Chem. Soc., 2010, 132, 4986.
Fig. 2 Proposed working model and X-ray crystallographic structure
of 3a.
its higher electron-withdrawing character. And the corres-
ponding trifluoromethylated indoles were obtained in high to
excellent yields and enantioselectivities (Table 3, entries 1–12,
60–99% yield, 79–96% ee). In addition, when the reaction was
scaled up tenfold with 5 mol% of L5–Y(OTf)3 complex,
excellent results (99% yield and 94% ee) were still maintained
(Table 3, entry 13), which highlighted the synthetic usefulness
of the protocol. Furthermore, compounds 3/5 could be trans-
formed into several CCl3(CF3)-containing building blocks by
reduction of the carbonyl group.6b
3 (a) A. Kleeman, J. Engel, B. Kutscher and D. Reichert, Pharma-
ceutical Substances, Thieme, New York, 4th edn, 2001; (b) M. Somei
and F. Yamada, Nat. Prod. Rep., 2005, 22, 73; (c) J. F. Austin and
D. W. C. MacMillan, J. Am. Chem. Soc., 2002, 124, 1172.
4 For reviews, see: (a) N. Saracoglua, Bioactive Heterocycles V,
Springer, Berlin, 2007, pp. 1–61; (b) M. Bandini, A. Melloni and
A. Umani-Ronchi, Angew. Chem., Int. Ed., 2004, 43, 550;
(c) K. A. Jørgensen, Synthesis, 2003, 1117; (d) M. Bandini,
A. Melloni, S. Tommasi and A. Umani-Ronchi, Synlett, 2005,
1199; (e) T. B. Poulsen and K. A. Jørgensen, Chem. Rev., 2008,
108, 2903; (f) S.-L. You, Q. Cai and M. Zeng, Chem. Soc. Rev.,
2009, 38, 2190; (g) V. Terrasson, R. M. de Figueiredo and
J. M. Campagne, Eur. J. Org. Chem., 2010, 2635; (h) M. Zeng
and S. L. You, Synlett, 2010, 1289; (i) G. Bartoli, G. Bencivenni and
R. Dalpozzo, Chem. Soc. Rev., 2010, 39, 4449; (j) E. Marques-
Lopez, A. Diez-Martinez, P. Merino and R. P. Herrera, Curr. Org.
Chem., 2009, 13, 1585 and references cited therein.
5 For recent Friedel–Crafts reactions of indoles involving CF3 groups,
see: (a) W. Zhuang, T. Hansen and K. A. Jørgensen, Chem.
Commun., 2001, 347; (b) B. Torok, M. Abid, G. London,
J. Esquibel, M. Torok, S. C. Mhadgut, P. Yan and G. K. S.
Prakash, Angew. Chem., Int. Ed., 2005, 44, 3086; (c) S. Nakamura,
K. Hyodo, Y. Nakamura, N. Shibata and T. Toru, Adv. Synth. Catal.,
2008, 350, 1443; (d) J. Nie, G.-W. Zhang, L. Wang, A.-P. Fu, Y. Zheng
and J.-A. Ma, Chem. Commun., 2009, 2356; (e) S. Sasaki, T. Yamauchi
and K. Higashiyama, Tetrahedron Lett., 2010, 51, 2326; (f) Z.-K. Pei,
Y. Zheng, J. Nie and J.-A. Ma, Tetrahedron Lett., 2010, 51, 4658;
(g) C. Wolf and P. Zhang, Adv. Synth. Catal., 2011, 353, 760;
(h) R. Husmann, E. Sugiono, S. Mersmann, G. Raabe, M. Rueping
and C. Bolm, Org. Lett., 2011, 13, 1044.
Based on the absolute configuration of the product 3a and
our previous studies on N,N0-dioxide–metal complexes,8e,f
a
possible working model was proposed (Fig. 2). As shown in
Fig. 2, the oxygens of N,N0-dioxide, amide oxygens coordinated
to Y(III) in a tetradentate manner to form two six-membered
chelate rings, and the enone 2a can coordinate to Y(III) from
the more accessible side. The incoming indole prefers to attack
the Re face rather than the Si face of the enone 2a because the
latter is strongly shielded by the nearby 2,6-diisopropylphenyl
group of N,N0-dioxide L5, which results in the S-configured
product.
In conclusion, we have developed a highly enantioselective
Friedel–Crafts alkylation of b-trichloro(trifluoro)methyl aryl
enones with indoles promoted by 5 mol% of N,N0-dioxide
L5–Y(OTf)3 complex under mild conditions. The reaction not
only provides a wide variety of biologically interesting indoles
with high to excellent yields (up to 99%) and excellent
enantioselectivities (up to 96% ee), but also opens a new entry
to construct tertiary carbon stereogenic centers bearing a CCl3
group. Further applications of the methodology are currently
underway in our laboratory.
6 (a) Y. Y. Huang, E. Tokunaga, S. Suzuki, M. Shiro and N. Shibata,
Org. Lett., 2010, 12, 1136; (b) G. Blay, I. Fernandez, M. C. Munoz,
J. R. Pedro and C. Vila, Chem.–Eur. J., 2010, 16, 9117;
(c) L.-L. Wen, Q.-L. Shen, X.-L. Wan and L. Lu, J. Org. Chem.,
2011, 76, 2282.
7 For recent examples, see: (a) S. Beaumont, E. A. Ilardi,
L. R. Monroe and A. Zakarian, J. Am. Chem. Soc., 2010,
132, 1482; (b) Z.-H. Gu and A. Zakarian, Angew. Chem., Int. Ed.,
2010, 49, 9702; (c) S. E. Brantley and T. F. Molinski, Org. Lett.,
1999, 1, 2165; (d) D. J. Faulkner, Nat. Prod. Rep., 1997, 14, 259;
(e) G. Bringmann, D. Feineis, R. God, K. Maksimenka,
J. Muhlbacher, K. Messer, M. Munchbach, K. P. Gulden,
E. M. Peters and K. Peters, Tetrahedron, 2004, 60, 8143;
(f) A. C. Durow, G.-C. Long, S. J. O’Connell and C. L. Willis,
Org. Lett., 2006, 8, 5401; (g) J. B. MacMillan, E. K. Trousdale and
T. F. Molinski, Org. Lett., 2000, 2, 2721.
We appreciate the National Natural Science Foundation of
China (Nos 20732003 and 21021001), and the Basic Research
Program of China (973 Program: 2011CB808600) for financial
support. We also thank Sichuan University Analytical &
Testing Center for NMR and X-ray analysis, and the State
Key Laboratory of Biotherapy for HRMS analysis.
8 (a) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie and X. M. Feng,
Angew. Chem., Int. Ed., 2008, 47, 1308; (b) Y. F. Cai, X. H. Liu,
Y. H. Hui, J. Jiang, W. T. Wang, W. L. Chen, L. L. Lin and
X. M. Feng, Angew. Chem., Int. Ed., 2010, 49, 6160; (c) W. Li,
J. Wang, X. L. Hu, K. Shen, W. T. Wang, Y. Y. Chu, L. L. Lin,
X. H. Liu and X. M. Feng, J. Am. Chem. Soc., 2010, 132, 8532;
(d) Z. Wang, D. H. Chen, Z. G. Yang, S. Bai, X. H. Liu, L. L. Lin
and X. M. Feng, Chem.–Eur. J., 2010, 16, 10130; (e) K. Zheng,
X. H. Liu, J. N. Zhao, Y. Yang, L. L. Lin and X. M. Feng, Chem.
Commun., 2010, 46, 3771; (f) Y. L. Liu, D. J. Shang, X. Zhou,
X. H. Liu and X. M. Feng, Chem.–Eur. J., 2009, 15, 2055;
(g) K. Zheng, C. K. Yin, X. H. Liu, L. L. Lin and X. M. Feng,
Angew. Chem., Int. Ed., 2011, 50, 2573.
Notes and references
1 (a) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH,
Weinheim, Germany, 2004; (b) M. Zanda, New J. Chem., 2004,
28, 1401; (c) K. Muller, C. Faeh and F. Diederich, Science, 2007,
317, 1881; (d) K. L. Kirk, Org. Process Res. Dev., 2008, 12, 305;
(e) J.-A. Ma and D. Cahard, Chem. Rev., 2008, 108, PR1;
(f) T. Konno, Curr. Org. Synth., 2010, 7, 455; (g) Y. Zheng and
J.-A. Ma, Adv. Synth. Catal., 2010, 352, 2745; (h) A. D. Dilman and
V. V. Levin, Eur. J. Org. Chem., 2011, 831; (i) J. Nie, H.-C. Guo,
D. Cahard and J.-A. Ma, Chem. Rev., 2011, 111, 455.
2 For hydrogenation: (a) K. Iseki, Y. Kuroki, T. Nagai and
Y. Kobayashi, Chem. Pharm. Bull., 1996, 44, 477; (b) M. Engman,
9 For the results of sub-optimal substrates, see ESIw (page 20–22).
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7821–7823 7823