V.S.V. Satyanarayana, A. Sivakumar / Ultrasonics Sonochemistry 18 (2011) 917–922
921
3.8. N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-(naphthalen-2-
yloxy)acetamide (IVa)
CDCl3) dH: 1.57–1.65 (m, 6H, CH3 on bisphenol), 2.05 (s, 12H, CH3
on pyrrole), 4.75 (s, 4H, OCH2), 5.80 (s, 2H, CONH), 6.89 (d, 4H,
J = 8.4 Hz, ArH), 7.19 (d, 4H, J = 8.4 Hz, ArH), 8.57 (s, 2H, CONH).
13C NMR (125.75 MHz, CDCl3) dC: 11.36, 31.19, 41.80, 66.61,
103.55, 114.74, 127.34, 127.89, 144.00, 155.79, 168.03. ESI-MS:
m/z calcd for C31H36N4O4: 528.27; found: 529.52 [M + H]+. HRMS
(EI): m/z [M]+ calcd for C31H36N4O4: 528.2737; found: 528.1000.
mp 204–206 °C. IR (KBr, m
max, cmꢀ1): 3216, 3060, 2923, 1688,
1629, 1511, 1465, 1432, 1391, 1256, 1219, 1184, 1122, 1068, 963,
844, 754. 1H NMR (400 MHz, CDCl3) dH: 1.61 (s, 3H, CH3 on pyrrole),
2.02–2.41 (m, 3H, CH3 on pyrrole), 4.60 (s, 1H, OCH), 4.83–4.91 (m,
1H, OCH), 6.85 (s, 2H, CH on pyrrole), 7.00–7.14 (m, 4H, ArH), 7.57–
7.82 (m, 3H, ArH), 8.26 (s, 1H, CONH). 13C NMR (125.75 MHz, CDCl3)
dC: 11.41, 66.59, 103.60, 107.73, 119.20, 124.46, 127.06, 127.14,
127.36, 128.04, 129.32, 129.88, 134.41, 155.90, 167.85. ESI-MS: m/z
calcd for C18H18N2O2: 294.14; found: 295.34 [M + H]+. HRMS (EI):
m/z [M]+ calcd for C18H18N2O2: 294.1368; found: 294.3500.
4. Conclusion
It may be reasonably concluded that the present procedure for
the synthesis of 2,5-dimethyl-N-substituted pyrroles through a
one pot condensation of 1,4-dicarbonyl compounds and substi-
tuted primary amines establishes the potential of uranyl nitrate
hexahydrate [UO2(NO3)2.6H2O] as a good catalyst under soft condi-
tions/ultrasonic irradiation for such condensation reactions and
gives hope for further useful applications in organic synthesis.
Moreover, this methodology offers substantial advantages with re-
spect to simplicity of operation, yield of products, reaction times,
availability of catalyst, choice of substituents on the pyrrole ring,
easy work-up procedure under mild reaction conditions. Pyrroles
with different N-substituted heterocyclic moieties (IVa–e) were
prepared by using uranyl nitrate hexahydrate as catalyst under re-
flux conditions and ultrasonic irradiation.
3.9. N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-(4-methyl-2-oxo-2H-
chromen-7-yloxy)acetamide (IVb)
mp 214–216 °C. IR (KBr, m
max, cmꢀ1): 3258, 3087, 2921, 1716,
1687, 1616, 1504, 1427, 1390, 1295, 1202, 1156, 1079, 846, 776.
1H NMR (400 MHz, CDCl3) dH: 1.52 (s, 3H, CH3 on coumarin),
2.07 (s, 6H, 2CH3 on pyrrole), 4.89 (s, 2H, OCH2), 5.90 (s, 2H, CH
on pyrrole), 7.23 (s, 1H, CH on coumarin), 7.42 & 7.49 (2d, 1H,
J = 6.8 & 7.6 Hz, ArH), 7.75–7.84 (m, 2H, ArH), 8.62 (s, 1H, CONH).
13C NMR (125.75 MHz, CDCl3) dC: 11.39, 18.60, 66.75, 102.27,
103.65, 112.06, 112.99, 114.29, 127.03, 127.31, 153.82, 154.95,
160.48, 160.92, 167.32. ESI-MS: m/z calcd for
326.13; found: 327.36 [M + H]+. HRMS (EI): m/z [M]+ calcd for
18H18N2O4: 326.1267; found: 326.5646.
C18H18N2O4:
Acknowledgment
C
Authors, express thanks to the Administration of VIT University,
Vellore for providing required facilities to support this work.
3.10. N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-(2,4,5-triphenyl-1H-
imidazol-1-yl)acetamide (IVc)
Appendix A. Supplementary data
mp 240–242 °C. IR (KBr,
1213 cmꢀ1 1H NMR (500 MHz, DMSO-d6) dH: 1.80 (s, 6H, C2,5–CH3
m
max, cmꢀ1): 3251, 3056, 2923, 1685,
Supplementary data associated with this article can be found, in
.
onpyrrolering), 4.65 (s, 2H, N-CH2-CO), 5.63 (s, 2H, C3,4–Hon pyrrole
ring), 7.15 & 7.22 (2t, 3H, J = 7.75 Hz, p-ArH of 2,4,5-phenyl rings),
7.39–7.44 (m, 4H, o,o0-ArH of 4,5-phenyl rings), 7.52–7.54 (m, 6H,
m,m’-ArHof2,4,5-phenylrings), 7.66–7.68(m, 2H, o,o’-ArHof 2-phe-
nyl ring), 10.88 (s, 1H, CONH). 13C NMR (125.75 MHz, CDCl3) dC:
10.39, 10.75, 45.90, 104.00, 105.24, 126.49, 126.70, 126.83, 127.11,
127.33, 127.92, 128.07, 128.12, 128.57, 128.74, 128.96, 129.07,
129.15, 129.18, 129.25, 129.42, 129.89, 130.13, 130.21, 130.30,
130.66, 130.87, 131.19, 134.04, 137.66, 148.37, 148.48, 171.07. LC-
MS: m/z calcd for C29H26N4O: 446.21; found: 447.2 [M + H]+. HRMS
(EI): m/z [M]+ calcd for C29H26N4O: 446.2107; found: 446.5400.
References
[1] R.A. Jones, G.P. Bean, The Chemistry of Pyrroles, Academic, London, 1977.
[2] A. Furstner, A catalytic approach to (R)-(+)-Muscopyridine with integrated
‘‘Self-Clearance’’, Angew. Chem, Int. Ed. 42 (2003) 3528–3532.
[3] (a) R. Ragno, G.R. Marshall, R.D. Santo, R. Costi, S. Massa, R. Rompei, M. Artico,
Antimycobacterial pyrroles: synthesis, Anti- Mycobacterium tuberculosis
activity and QSAR studies, Bioorg. Med. Chem. 8 (2000) 1423–1432;
(b) C. Franc, F. Denone, C. Cuisiner, L. Ghosez, A general synthesis of 2-formyl-
3-arylpyrroles, Tetrahedron Lett. 40 (1999) 4555–4558;
(c) J.-H. Liu, Q.-C. Yang, T.C.W. Mak, H.N.C. Wong, Highly regioselective
synthesis of 2 3 4-trisubstituted 1 H -pyrroles: A formal total synthesis of
Lukianol A, J. Org. Chem. 65 (2000) 3587–3595;
(d) R.K. Dieter, H. Yu, A facile synthesis of polysubstituted pyrroles, Org. Lett. 2
(2000) 2283–2286;
(e) C.W. Jefford, K. Sienkiewicz, S.R. Thuruton, Short, Enantiospecific Syntheses
3.11. 2,2’-(Naphthalene-2,7-diylbis(oxy))bis(N-(2,5-dimethyl-1H-
pyrrol-1-yl)acetamide) (IVd)
of Indolizidines 209B and 209D, and Piclavine A from diethyl-
Helv. Chim. Acta 78 (1995) 1511–1524;
(f) R.I.J. Amos, B.S. Gourlay, P.P. Molesworth, J.A. Smith, O.R. Sprod, Annulation
of pyrrole: application to the synthesis of indolizidine alkaloids, Tetrahedron
61 (2005) 8226–8230.
L-glutamate,
mp 224–226 °C. IR (KBr, m
max, cmꢀ1): 3324, 2920, 1707, 1631,
1514, 1435, 1389, 1252, 1209, 1162, 1062, 835, 754. 1H NMR
(400 MHz, CDCl3) dH: 2.05 (s, 12H, CH3 on pyrrole), 4.84 (s, 4H,
OCH2), 5.82 (s, 4H, CH on pyrrole), 7.12 (s, 2H, ArH on C1 & C8 of
naphthalene ring), 7.13 (d, 2H, J = 8.2 Hz, ArH on C3 & C6 of naphtha-
lenering), 7.78(d, 2H, J = 8.6 Hz, ArHonC4&C5of naphthalenering),
8.74 (s, 2H, CONH). 13C NMR (100.6 MHz, CDCl3) dC: 10.81, 11.15,
66.99, 103.95, 104.46, 107.20, 116.23, 125.72, 127.74, 130.04,
135.32, 155.68, 167.01. ESI-MS: m/z calcd for C26H28N4O4: 460.21;
found: 460.50 [M]+. HRMS (EI): m/z [M]+ calcd for C26H28N4O4:
460.2111; found: 460.5200.
[4] [a] J.A. Joule, K. Mills, Heterocyclic Chemistry, fourth ed., Blackwell, Science,
Oxford, 2000;
[b] F. Bellina, R. Rossi, Synthesis and biological activity of pyrrole, pyrroline
and pyrrolidine derivatives with two aryl groups on adjacent positions,
Tetrahedron 62 (2006) 7213–7256;
[c] M.S. Butler, The role of natural product chemistry in drug discovery, J. Nat.
Prod. 67 (2004) 2141–2153;
[d] H. Hoffmann, T. Lindel, Synthesis of the pyrrole-imidazole alkaloids,
Synthesis (2003) 1753–1783.
[5] (a) C.W. Jefford, Q. Tang, A. Zaslona, Short, enantiogenic syntheses of (ꢀ)-
indolizidine 167B and (+)-monomorine, J. Am. Chem. Soc. 113 (1991) 3513–
3518;
3.12. 2,2’-(4,4’-(propane-2,2-diyl)bis(4,1-phenylene)) bis(oxy)bis(N-
(2,5-dimethyl-1H-pyrrol-1-yl)acetamide) (IVe)
(b) C.W. Jefford, F.V. Naide, K. Sienkiewicz, The synthesis of chiral 1-(1H-
pyrrole) derivatives, Tetrahedron: Asymmetry 7 (1996) 1069–1076;
[c] C. Bird, G.W.H. Cheeseman, Comprehensive Heterocyclic Chemistry, vol. 4,
Pergamon, Oxford, 1994.
mp 170–172 °C. IR (KBr,
1435, 1246, 1210, 1182, 1068, 831, 753, 580. 1H NMR (300 MHz,
m
max, cmꢀ1): 3237, 2971, 1689, 1506,
[6] F. Palacios, D. Aparico, J.M.D.L. Santos, J. Vicario, Regioselective alkylation
reactions of hydrazones derived from phosphine oxides and phosphonates.