Synthesis of [Fe(L1)2](ClO4)2·(H2O) [1(H2O)]
rotary evaporation, the resulting yellow-orange solid was dissolved
in CH3CN and, after diffusion of diethyl ether into this solution,
the polycrystalline [Fe(L2)2](BF4)2·CH3CN·H2O compound was
obtained (64.4 mg, yield 54%). Elemental analysis found (calcd)
for C78H63B2F8FeN11O5 ([Fe(C38H29O2N5)2](BF4)2·CH3CN·H2O,
1463.90 g mol-1): C 63.72 (64.00)%; H 4.28 (4.34)%, N 10.36
(10.52)%. 1H NMR (300 MHz, CD3CN, 25 ◦C, d (ppm)); 67.00 (s,
pyrazole), 58.65 (s, pyrazole), 39.62 (d, pyrazole), 8.27–7.39 (m),
5.70 (s, –CH2–Ph), 3.34 (t, –CH2–), 2.51 (t, –CH2–). ESI-TOF MS
in CH3CN (Da): m/z (rel. intensity, assigned structure) = 321.62
(35%, FeC38H29N5O2Cl, M2+ - L2); 615.26 (100%, FeC76H58N10O4,
M2+, calc. = 615.20); 909.40 (17%, FeC114H87N15O6, M2+ + L2);
22.3 mg (0.054 mmol) of 2,6-di(1H-pyrazol-1-yl)-4-(pyren-1-
yl)pyridine (L1) was dissolved in 7 mL of dichloromethane.
9.80 mg (0.027 mmol) of iron(II) perchlorate hydrate was dissolved
in 2 mL of methanol and this solution was subsequently layered
over the solution of L1. Slow diffusion affords complex 1 as dark
yellow single crystals, which were suitable for single crystal X-ray
diffraction (16.5 mg, yield 56%). Elemental analysis found (calcd)
for C54H36Cl2FeN10O9 {[Fe(L1)2](ClO4)2·H2O, 1095.703 g mol-1}:
1
C 59.28 (59.20)%; H 3.29 (3.31)%, N 12.86 (12.78)%. H NMR
(500 MHz, CD3CN, 25 ◦C, d (ppm)); 63.01 (s, pyrazole), 56.59
(s, pyridine), 37.90 (s, pyrazole), 36.32 (s, pyrazole), 8.46–7.88
(m, pyrene). ESI-TOF MS in CH3CN (Da): m/z (rel. intensity,
assigned structure) = 249.56 (6%, FeC28H21N5O, M2+ - L1 +
CH3OH); 254.08 (8%, FeC29H20N6, M2+ - L1 + CH3CN); 263.09
(9%; FeC29H22N6O2, M2+ - L1 + CH3CN + H2O); 439.17 (100%,
FeC54H34N10, M2+, calc. 439.12); 566.10 (12%, FeC27ClH17N5O4,
-1
1203.04 (7%, FeC152H116N20O8, M2+ + 2L2). FT-IR (KBr): n/cm
=
˜
3135, 3038, 2939, 2875, 2250, 1738, 1630, 1583, 1560, 1526, 1497,
1461, 1431, 1410, 1375, 1338, 1257, 1217, 1176, 1160, 1051, 1034,
972, 914, 843, 827, 792, 780, 769, 710, 680, 643, 630, 591, 520, 492.
Caution. Although we have experienced no difficulties in handling
these complexes, metal–organic perchlorates are potentially explo-
sive and should be handled with care and in small quantities.
M2+ - L1 + ClO4 ); 644.76 (6%, FeC81H51N15, M2+ + L1); 977.28
-
(9%, FeC54ClH34N10O4, M2+ + ClO4 ). FT-IR (KBr): n/cm
=
-
-1
˜
3148, 3114, 3043, 1621, 1567, 1523, 1497, 1457, 1407, 1338, 1235,
1216, 1174, 1099, 1057, 1014, 975, 874, 842, 792, 765, 732, 720,
680, 665, 645, 622, 601, 502.
Acknowledgements
This research was supported by the DFG Collaborative Research
Center TR88 (3MET) under subprojects C5 and C7. We also
acknowledge infrastructure support by KIT and the Helmholtz
Association.
Synthesis of [Fe(L2)2](ClO4)2 (2)
A solution of iron(II) perchlorate hydrate (15.25 mg, 0.042 mmol)
in MeOH (3 mL) was added to 51.5 mg (0.088 mmol) of L2
dissolved in CH2Cl2 (12 mL). Immediately, a colour change from
colourless to yellow occurred and the reaction mixture was stirred
at room temperature for two hours under a N2 atmosphere.
Solvent was removed by rotary evaporation, the resulting yellow-
orange solid was dissolved in CH3CN and diethyl ether was
slowly diffused into this solution. The polycrystalline sample
obtained contains acetonitrile and water as can be deduced
from its elemental analysis. These solvents are slowly lost on
exposure to air yielding, after a few weeks, the compound
[Fe(L2)2](ClO4)2 (2) (44.3 mg, yield 74%). Elemental analysis
found (calcd) for C76H58Cl2FeN10O12 {[Fe(C38H29O2N5)2](ClO4)2,
1430.122 g mol-1): C 63.67 (63.83)%; H 4.170 (4.09)%, N 9.80
Notes and references
1 For a general overview on spin-transition compounds, see: (a) O. Kahn
and C. J. Martinez, Science, 1998, 279, 44; (b) P. Gu¨tlich and H. A.
Goodwin, Top. Curr. Chem., 2004, 233, 1; (c) E. Ko¨nig, Prog. Inorg.
Chem., 1987, 35, 527; (d) E. Ko¨nig, Struct. Bonding (Berlin), 1991,
76, 51; (e) P. Gu¨tlich, Y. Garcia and H. A. Goodwin, Chem. Soc. Rev.,
2000, 29, 419; (f) J. A. Real, A. B. Gaspar, V. Niel and M. C. Mun˜oz,
Coord. Chem. Rev., 2003, 236, 121; (g) M. A. Halcrow, Coord. Chem.
Rev., 2005, 249, 2880; (h) O. Kahn and J. P. Launay, Chemtronics, 1988,
3, 140.
2 J. M. Holland, J. A. McAllister, C. A. Kilner, M. Thornton-Pet, A. J.
Bridgeman and M. A. Halcrow, J. Chem. Soc., Dalton Trans., 2002,
548.
3 J. M. Holland, J. A. McAllister, Z. Lu, C. A. Kilner, M. Thornton-Pett
and M. A. Halcrow, Chem. Commun., 2001, 577.
(9.79)%. H NMR (300 MHz, CD3CN, 25 ◦C, d (ppm)): 66.69
1
4 M. A. Halcrow, Polyhedron, 2007, 26, 3523.
(s, pyrazole), 58.42 (s, pyridine), 39.59 (s, pyrazole), 39.09 (s,
pyrazole), 8.26–7.41 (m), 5.70 (s, –CH2–Ph), 3.33 (t, –CH2–), 2.50
(t, –CH2–). ESI-TOF MS in CH3CN (Da): m/z (rel. intensity,
assigned structure) = 615.20 (100%, FeC76H58N10O4, M2+, calc. =
615.20); 678.14 (30%, FeC38H29N5O2Cl, M2+ - L2 + Cl-); 909.32
(16%, FeC114H87N15O6, M2+ + L2); 1202.94 (7%, FeC152H116N20O8,
M2+ + 2L2); 1265.38 (5%, FeC76H58N10O4Cl, M2+ + Cl-); 1329.36
5 M. A. Halcrow, Coord. Chem. Rev., 2009, 253, 2493 and references
therein.
6 (a) C. Rajadurai, O. Fuhr, R. Kruk, M. Ghafari, H. Hahn and M.
Ruben, Chem. Commun., 2007, 2636; (b) N. T. Madhu, I. Salitrosˇ, F.
Schramm, S. Klyatskaya, O. Fuhr and M. Ruben, C. R. Chim., 2008,
ˇ
ˇ
11, 1166 and references therein; (c) I. Salitrosˇ, N. T. Madhu, R. Boca,
J. Pavlik and M. Ruben, Monatsh. Chem., 2009, 140, 695.
7 (a) M. Cavallini, I. Bergenti, S. Milita, G. Ruani, I. Salitros, Z.-R. Qu,
R. Chandrasekar and M. Ruben, Angew. Chem., Int. Ed., 2008, 47,
8596; (b) S. Cobo, G. Molna´r, J. A. Real and A. Bousseksou, Angew.
Chem., Int. Ed., 2006, 45, 5786; (c) G. Molna´r, S. Cobo, J. A. Real, F.
Carcenac, E. Daran, C. Vieu and A. Bousseksou, Adv. Mater., 2007,
19, 2163; (d) C. Thibault, G. Molna´r, L. Salmon, A. Bousseksou and
C. Vieu, Langmuir, 2010, 26, 1557.
-
-1
(3%, FeC76H58N10O8Cl, M2+ + ClO4 ). FT-IR (KBr): n/cm
=
˜
3135, 3038, 2931, 2866, 1727, 1629, 1581, 1558, 1526, 1496, 1460,
1432, 1410, 1373, 1337, 1258, 1213, 1158, 1094, 1056, 1016, 972,
842, 818, 792, 771, 751, 717, 681, 643, 623, 590, 491.
8 S. Klyatskaya, J. R. Gala´n Mascaro´s, L. Bogani, F. Hennrich, M.
Kappes, W. Wernsdorfer and M. Ruben, J. Am. Chem. Soc., 2009,
131, 15143.
9 (a) O. Kahn, J. Kro¨ber and C. Jay, Adv. Mater., 1992, 4, 718; (b) N.
Moliner, M. C. Mun˜oz, S. Letard, X. Solans, N. Mene´ndez, A. Goujon,
F. Varret and J. A. Real, Inorg. Chem., 2000, 39, 5390; (c) V. Niel, J. M.
Martinez-Agudo, M. C. Mun˜oz, A. B Gaspar and J. A. Real, Inorg.
Chem., 2001, 40, 3838; (d) A. Galet, V. Niel, M. C. Mun˜oz and J. A.
Real, J. Am. Chem. Soc., 2003, 125, 14224; (e) J. A. Real, E. Andre´s, M.
Synthesis of [Fe(L2)2](BF4)2·CH3CN·H2O (3)
A solution of Fe(BF4)2·6H2O (27.50 mg, 0.082 mmol) in MeOH
(3 mL) was added to 98 mg (0.167 mmol) of L2 dissolved in CH2Cl2
(15 mL). Immediately, a colour change from colourless to yellow
occurred and the reaction mixture was stirred at room temperature
for two hours under a N2 atmosphere. Solvent was removed by
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 7564–7570 | 7569
©