Organometallics
ARTICLE
results, it appears that the greater the involvement of MLCT in
the lowest electronic transition, the less efficient the photoi-
somerization since Pt2 is the least efficient in photoisomerization
but with the most significant contributions of MLCT to the
lowest excited state, compared to Pt1 and Pt3 (see Supporting
Information). Hence a low-lying MLCT state is also a highly
effective deactivation pathway for photoisomerization of the
boryl chromophore in the metal compounds.
Aziz, H.; Hu, N.-X.; Popoviꢀc, Z.; Wang, S. J. Am. Chem. Soc. 2000,
122, 3671. (c) Liu, Q.-D.; Mudadu, M. S.; Thummel, R.; Tao, Y.; Wang,
S. Adv. Funct. Mater. 2005, 15, 143. (d) Chen, H.-Y.; Chi, Y.; Liu, C.-S.;
Yu, J.-K.; Cheng, Y.-M.; Chen, K.-S.; Chou, P.-T.; Peng, S.-M.; Lee,
G.-H.; Carty, A. J.; Yeh, S.-J.; Chen, C.-T. Adv. Funct. Mater. 2005,
15, 567. (e) Zhang, H.; Huo, C.; Zhang, J.; Zhang, P.; Tian, W.; Wang, Y.
Chem. Commun. 2006, 281. (f) Zhang, Z.; Bi, H.; Zhang, Y.; Yao, D.;
Gao, H.; Fan, Y.; Zhang, H.; Wang, Y.; Wang, Y.; Chen, Z.; Ma, D. Inorg.
Chem. 2009, 48, 7230.
The behavior of the B(ppy)Mes2 system is in sharp contrast to
that of dithienylethene compounds, which have been shown to
undergo photoisomerization from a LC excited state that may be
sensitized by the attachment of a metal ion via an energetically
favorable MLCT excited state, as demonstrated by a number of
research groups.6
(3) (a) Zhang, G.; Lu, J.; Sabat, M.; Fraser, C. L. J. Am. Chem. Soc.
2010, 132, 2160. (b) Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser,
C. L. Nat. Mater. 2009, 8, 747. (c) Maeda, H.; Mihashi, Y.; Haketa, Y.
Org. Lett. 2008, 10, 3179. (d) Maeda, H.; Haketa, Y. Pure Appl. Chem.
2011, 83, 189. (e) Kano, N.; Yoshino, J.; Kawashima, T. Org. Lett. 2005,
7, 3909. (f) Yoshino, J.; Kano, N.; Kawashima, T. Tetrahedron 2008,
64, 7774.
(4) (a) Rao, Y. L.; Amarne, H.; Zhao, S. B.; McCormick, T. M.;
Martiꢀc, S.; Sun, Y.; Wang, R. Y.; Wang, S. J. Am. Chem. Soc. 2008,
130, 12898. (b) Baik, C.; Hudson, Z. M.; Amarne, H.; Wang, S. J. Am.
Chem. Soc. 2009, 131, 14549. (c) Amarne, H.; Baik, C.; Murphy, S. K.;
Wang, S. Chem.—Eur. J. 2010, 16, 4750. (d) Murphy, S. K.; Baik, C.; Lu,
J. S.; Wang, S. Org. Lett. 2010, 12, 5266. (e) Amarne, H.; Baik, C.; Wang,
R.; Wang, S. Organometallics 2011, 30, 665. (f) Baik, C.; Murphy, S. K.;
Wang, S. Angew. Chem., Int. Ed. 2010, 49, 8224.
’ CONCLUSIONS
A new photochromic boryl compound that is capable of
forming cyclometaled Pt(II) compounds has been achieved.
Three cyclometalated Pt(II) compounds that share a conju-
gated chelate backbone with the photochromic chromophore
B(ppy)Mes2 have been synthesized. These Pt(II) compounds
are brightly phosphorescent at ambient temperature. The Pt(II)
unit in these compounds has been found to be highly effective in
quenching the photoisomerization process of the B(ppy)Mes2
chromophore by enhancing the 3LC state localized on the chelate
backbone. On the basis of this study, enhancing the mesityl to the
chelate charge transfer transition and destabilizing the πfπ*
transition of the chelate backbone are the key factors that should
be considered for achieving new and highly efficient photo-
chromic systems based on N,C-chelate four-coordinate boron
compounds.
(5) Kume, S.; Nishihara, H. Dalton Trans. 2008, 3260 and references
therein.
(6) (a) Yam, V. W.-W.; Ko, C.-C.; Zhu, N. J. Am. Chem. Soc. 2004,
126, 12734. (b) Yam, V. W.-W.; Ko, C.-C.; Zhu, N. J. Am. Chem. Soc.
2007, 129, 6058. (c) Ko, C.-C.; Wu, L.-X.; Wong, M.-C. K.; Zhu, N.;
Yam, V. W.-W. Chem.—Eur. J. 2004, 10, 766. (d) Yam, V. W.-W.; Ko,
C.-C.; Wu, L.-X.; Wong, M.-C. K.; Cheung, K.-K. Organometallics 2000,
19, 1820. (e) Ko, C.-C.; Yam, V. W.-W. J. Mater. Chem. 2010, 20, 2063.
(f) Roberts, M. N.; Carling, C.-J.; Nagle, J. K.; Branda, N. R.; Wolf, M. O.
J. Am. Chem. Soc. 2009, 131, 16644. (g) Aubert, V.; Guerchais, V.; Ishow,
E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Le Bozec, H. Angew. Chem.,
Int. Ed. 2008, 47, 577. (h) Belser, P.; De Cola, L.; Hartl, F.; Adamo, V.;
Bozic, B.; Chriqui, Y.; Iyer, V. M.; Jukes, R. T. F.; K€uhni, J.; Querol, M.;
Roma, S.; Salluce, N. Adv. Funct. Mater. 2006, 16, 195.
’ ASSOCIATED CONTENT
S
(7) (a) Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba,
I.; Bau, R.; Thompson, M. E. Inorg. Chem. 2002, 41, 3055. (b) Hudson,
M. Z.; Sun, C.; Helander, M. G.; Amarne, H.; Lu, Z.-H.; Wang, S. Adv.
Funct. Mater. 2010, 20, 3426. (c) Rao, Y. L.; Wang, S. Inorg. Chem. 2009,
48, 7698.
(8) Klein, A.; Schurr, T.; Kn€odler, A.; Gudat, D.; Klinkhammer,
K.-W.; Jain, V. K.; Zalis, S.; Kaim, W. Organometallics 2005, 17, 4125.
(9) Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard,
W. A., III; Thompson, M. E. J. Am. Chem. Soc. 2009, 131, 9813.
(10) Frisch, M. J.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:
Wallingford, CT, 2004.
Supporting Information. Synthetic details for the pre-
b
cursor compounds of L1, phosphorescence spectral change of
Pt(II) compounds toward oxygen, TD-DFT computational data
and MO diagrams, photoisomerization experimental details and
data, and complete crystal structural data. This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: wangs@chem.queensu.ca.
(11) SHELXTL Version 6.14; Bruker AXS, 2000ꢀ2003.
’ ACKNOWLEDGMENT
We thank the Natural Sciences and Engineering Research
Council of Canada for financial support.
’ REFERENCES
(1) For recent reviews, see: (a) Rao, Y. L; Wang, S. Inorg. Chem.
2011ASAP and references therein. (b) Wang, S. Coord. Chem. Rev.
2001, 215, 79. (c) Entwistle, C. D.; Marder, T. B. Angew. Chem., Int. Ed.
2002, 41, 2927. (d) Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004,
16, 4574. (e) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. 2009, 4, 1386.
(f) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891. (g) J€akle, F.
Chem. Rev. 2010, 110, 3985. (h) J€akle, F. Coord. Chem. Rev. 2006,
250, 1107.
(2) (a) Cui, Y.; Liu, Q. D.; Bai, D. R.; Jia, W. L.; Tao, Y.; Wang, S.
Inorg. Chem. 2005, 44, 601. (b) Liu, S. F.; Wu, Q.; Schmider, H. L.;
4458
dx.doi.org/10.1021/om200534m |Organometallics 2011, 30, 4453–4458