technical support from Dr Jason Sanchez of Malvern (formerly
Viscotek) Inc. and Agilent Technologies (formerly Molecular
Imaging).
Notes and references
1 (a) N. Nasongkla, B. Chen, N. Macaraeg, M. E. Fox, J. M. J. Frechet
and F. C. J. Szoka, J. Am. Chem. Soc., 2009, 131, 3842–3843;
(b) D. M. Eugene and S. M. Grayson, Macromolecules, 2008, 41,
5082–5084; (c) Z. J. Guan, J. Polym. Sci., Part A: Polym. Chem., 2003,
41, 3680–3692; (d) Z. Guan, Chem.–Eur. J., 2002, 8, 3086–3092;
(e) E. M. Harth, S. Hecht, B. Helms, E. E. Maelmstrom, J. M.
J. Frechet and C. J. Hawker, J. Am. Chem. Soc., 2002, 124,
3926–3938; (f) B. D. Edgecombe, J. A. Stein, J. M. J. Frechet, Z. Xu
and E. J. Kramer, Macromolecules, 1998, 31, 1292–1304; (g) J. B. Rose,
in High Performance Polymers: Their Origin and Development,
R. B. Seymour and G. S. Kirshenbaum, Elsevier, New York, 1986,
p. 187.
Fig. 3 (a) AFM image of the PS catenanes on a 9 Â 9 mm scale on
mica, (b) magnified images of the representative PS catenanes from (a),
and (c) line profile of one of the PS catenanes from (b).
2 For reviews, see: (a) K. Matyjaszewski and J. Xia, Chem. Rev., 2001,
101, 2921–2990; (b) M. Kamigaito, T. Ando and M. Sawamoto, Chem.
Rev., 2001, 101, 3689–3746; (c) A. D. Schluter and J. P. Rabe, Angew.
Chem., Int. Ed., 2000, 39, 864–883.
open arms or intermolecular coupling of the 4 arms of the PS
complex (3), or simply different conformations of catenanes
(Fig. S2, ESIw). But the formation of the catenanes is clear.
In order to obtain metal-free polymer catenanes, copper (I)
from the template was removed by stirring the polymer
catenanes (4) with saturated solution of KCN in THF: methanol
(3 : 1). The GPC traces of the demetallation step (see Fig. S3,
ESIw) of the PS catenanes (4) show that the molecular weight
3 (a) Y. Tezuka and K. Fujiyama, J. Am. Chem. Soc., 2008, 128,
6266–6270; (b) W. Jeong, J. L. Hedrick and R. M. Waymouth,
J. Am. Chem. Soc., 2007, 129, 8414–8415; (c) D. A. Culkin,
W. Jeong, S. Csihony, E. D. Gomez, N. P. Balsara, J. L. Hedrick
and R. M. Waymouth, Angew. Chem., Int. Ed., 2007, 46, 2627–2630;
(d) J. Pyun, T. Kowalewski and K. Matyjaszewski, Macromol. Rapid
Commun., 2003, 24, 1043–1059; (e) A. W. Bosman, R. Vestberg,
A. Heumann, J. M. J. Frechet and C. J. Hawker, J. Am. Chem.
Soc., 2003, 125, 715–728; (f) L. Shu, A. D. Schluter, C. Ecker,
N. Severin and J. P. Rabe, Angew. Chem., Int. Ed., 2001, 40,
4666–4669.
of the PS catenanes (5) (Mn: 7374 g molÀ1, Mw: 7922 g molÀ1
)
barely changed even after removing the copper, indicating an
interlocked structure of cyclic polymers. The peak broadening
of the GPC trace of the PS catenanes (4) (Fig. 2) due to the
unreacted acyclic precursor was also supported by the GPC
analysis of the demetallation step in Fig. S3 (ESIw). The
appearance of the broad shoulder at a higher retention volume
(Mn: 2769 g molÀ1, Mw: 2982 g molÀ1) denotes the formation
of decomplexed acyclic PS with approximately half the molecular
weight of the PS complex (3). On the basis of the relative areas
of the GPC traces of the PS catenanes (5) (Fig. S3, ESIw), the
amount of cyclic polymer catenanes formed in the reaction
was estimated to be 60% of the product mixture.
4 D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725–2828.
5 J. P. Sauvage, Acc. Chem. Res., 1990, 23, 319–327.
6 F. Vogtle, F. Dunwald and T. Schmidt, Acc. Chem. Res., 1996, 29,
451–460.
7 C. O. Dietrich-Bucheker and J. P. Sauvage, Chem. Rev., 1987, 87,
795–810.
8 (a) W. W. Graessley, Adv. Polym. Sci., 1974, 16, 1–3;
(b) W. W. Graessley, Adv. Polym. Sci., 1982, 47, 68.
9 S. Wu, Polymer Interface and adhesion, Marcel Dekker, New York,
1982.
10 (a) C. J. G. Plummer, N. Mauroux-Cudre and H. H. Kaush,
Polym. Eng. Sci., 1994, 34, 318; (b) S. Ottani and R. S. Porter,
Macromol. Rapid Commun., 1995, 16, 813.
11 H. R. Brown and T. R. Russell, Macromolecules, 1996, 29, 798.
12 Y. Zhang and U. Wiesner, J. Chem. Phys., 1995, 103, 4784.
13 W. W. Grassley, Viscoelasticity and Flow in Polymer Melts and
Concentrated Solutions, Physical Properties of Polymers,
Symposium Series no 84, American Chemical Society, Washington
DC, 1984, pp. 97–153.
14 G. Schill, Catenanes, Rotaxanes and Knots, Academic Press, 1971.
15 E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433.
16 D. H. Busch and N. A. Stephenson, Chem. Rev., 1990, 100,
119–154.
In conclusion, a new, simple, and versatile method for the
synthesis of polymer catenanes with complex and higher order
of cyclic topology was demonstrated. The supramolecularly
assembled ATRP initiator (1) was able to polymerize styrene
with a good control over molecular weight. The intramolecular
cyclization of the PS complex (3) via ATRC was proven to be
an effective method to obtain polymer catenanes based on the
UV-vis spectroscopy, AFM imaging and GPC results. The
presented method is promising in extending the synthesis to
higher order knotted polymeric structures like trefoil knots
(non-trivial knots) through designed templates. This would
open doors for the investigation of important physico-
mechanical properties and possible applications of these
knotted structures. Moreover, it is possible to extend this
towards other ring-expansion living polymerization methods
as well as block copolymer topologies.
17 D. M. Walba, Tetrahedron, 1985, 41, 3161.
18 J. P. Sauvage, Chem.–Eur. J., 2005, 11, 4374–4386.
19 T. Sarbu, K. Y. Lin, J. Spanswick, R. R. Gil, D. J. Siegwart and
K. Matyjaszewski, Macromolecules, 2004, 37, 9694–9700.
20 L. Rique-Lurbet, M. Schappacher and A. Deffieux, Macromolecules,
1994, 27, 6318.
21 H. R. Kricheldorf, S. Bohme, G. Schwarz, R. P. Kruger and
G. Schulz, Macromolecules, 2001, 34, 8886.
22 A. P. Smith and C. L. Fraser, Macromolecules, 2002, 35, 594–596.
23 P. Yang, X. Yang and B. Wu, Eur. J. Inorg. Chem., 2009,
2951–2958.
24 B. A. Laurent and S. M. Grayson, J. Am. Chem. Soc., 2006, 128,
4238–4239.
25 K. Adachi, S. Honda, S. Hayashi and Y. Tezuka, Macromolecules,
2008, 41, 7898–7903.
26 A. F. Voter and E. S. Tillman, Macromolecules, 2010, 43, 10304–10310.
27 K. A. Alberty, T. E. Hogen-Esch and S. Carlotti, Macromol.
Chem. Phys., 2005, 206, 1035–1042.
The authors acknowledge funding from NSF CHE-10-41300,
DMR-10-06776, CBET-0854979, Texas NHARP 01846, and
Robert A. Welch Foundation, E-1551. Assistance on the
synthesis of initiators by Joey Mangadlao and Shemaiah
Pascua is greatly acknowledged. The authors also acknowledge
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9173–9175 9175