M. M. Kemp et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4164–4169
4169
5. Leoni, F.; Zaliani, A.; Bertolini, G.; Porro, G.; Pagani, P.; Pozzi, P.; Dona, G.;
Fossati, G.; Sozzani, S.; Azam, T.; Bufler, P.; Fantuzzi, G.; Goncharov, I.; Kim, S.
H.; Pomerantz, B. J.; Reznikov, L. L.; Siegmund, B.; Dinarello, C. A.; Mascagni, P.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2995.
6. (a) Dompierre, J. P.; Godin, J. D.; Charrin, B. C.; Cordelieres, F. P.; King, S. J.;
Humbert, S.; Saudou, F. J. Neurosci. 2007, 27, 3571; (b) Minucci, S.; Pelicci, P. G.
Nat. Rev. Cancer 2006, 6, 38; (c) Suzuki, T. Chem. Pharm. Bull. (Tokyo) 2009, 57,
897.
MS-275, a control compound, increased global lysine acetylation,
but caused little change in tubulin acetylation, which is consistent
with its selective inhibition of HDAC1–3 versus HDAC6 in our bio-
chemical assay.
In summary, we have identified a novel, pan-selective HDAC
inhibitor from an SMM-based binding screen and demonstrated
inhibitory activity against HDACs using an in vitro biochemical as-
say and cellular acetylation assays. The scaffold does not resemble
previously established pharmacophore models for HDAC inhibi-
tors. This novel HDACi structure may be explored further using
structure-guided approaches to elucidate binding mechanism and
to enhance the potency and selectivity through various structural
modifications, leading towards broad biological and therapeutic
applications.
7. Tan, J.; Cang, S.; Ma, Y.; Petrillo, R. L.; Liu, D. J. Hematol. Oncol. 2010, 3, 5.
8. Marks, P. A.; Xu, W. S. J. Cell. Biochem. 2009, 107, 600.
9. (a) Bowers, A.; West, N.; Taunton, J.; Schreiber, S. L.; Bradner, J. E.; Williams, R.
M. J. Am. Chem. Soc. 2008, 130, 11219; (b) Dokmanovic, M.; Clarke, C.; Marks, P.
A. Mol. Cancer Res. 2007, 5, 981; (c) Miller, T. A.; Witter, D. J.; Belvedere, S. J.
Med. Chem. 2003, 46, 5097; (d) Singh, E. K.; Ravula, S.; Pan, C.-M.; Pan, P.-S.;
Vasko, R. C.; Lapera, S. A.; Weerasinghe, S. V. W.; Pflum, M. K. H.; McAlpine, S. R.
Bioorg. Med. Chem. Lett. 2008, 18, 2549.
10. Sternson, S. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L. Org. Lett. 2001, 3,
4239.
11. (a) Bieliauskas, A. V.; Pflum, M. K. H. Chem. Soc. Rev. 2008, 37, 1402; (b) Butler,
K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P. J. Am. Chem.
Soc. 2010, 132, 10842; (c) Chen, Y.; Lopez-Sanchez, M.; Savoy, D. N.; Billadeau,
D. D.; Dow, G. S.; Kozikowski, A. P. J. Med. Chem. 2008, 51, 3437; (d) Kozikowski,
A. P.; Tapadar, S.; Luchini, D. N.; Kim, K. H.; Billadeau, D. D. J. Med. Chem. 2008,
51, 4370; (e) Mai, A.; Massa, S.; Pezzi, R.; Simeoni, S.; Rotili, D.; Nebbioso, A.;
Scognamiglio, A.; Altucci, L.; Loidl, P.; Brosch, G. J. Med. Chem. 2005, 48, 3344;
(f) Matsuyama, A.; Shimazu, T.; Sumida, Y.; Saito, A.; Yoshimatsu, Y.;
Seigneurin-Berny, D.; Osada, H.; Komatsu, Y.; Nishino, N.; Khochbin, S.;
Horinouchi, S.; Yoshida, M. EMBO J. 2002, 21, 6820; (g) Paris, M.; Porcelloni,
M.; Binaschi, M.; Fattori, D. J. Med. Chem. 2008, 51, 1505; (h) Suzuki, T.;
Matsuura, A.; Kouketsu, A.; Hisakawa, S.; Nakagawa, H.; Miyata, N. Bioorg. Med.
Chem. 2005, 13, 4332; (i) Tang, W.; Luo, T.; Greenberg, E. F.; Bradner, J. E.;
Schreiber, S. L. Bioorg. Med. Chem. Lett. 2011, 21, 2601; (j) Wang, D.-F.; Helquist,
P.; Wiech, N. L.; Wiest, O. J. Med. Chem. 2005, 48, 6936.
12. Vegas, A. J.; Fuller, J. H.; Koehler, A. N. Chem. Soc. Rev. 2008, 37, 1385.
13. (a) Donald, A. D. G.; Clark, V. L.; Patel, S.; Day, F. A.; Rowlands, M. G.; Wibata, J.;
Stimson, L.; Hardcastle, A.; Eccles, S. A.; McNamara, D.; Needham, L. A.;
Raynaud, F. I.; Aherne, W.; Moffat, D. F. Bioorg. Med. Chem. Lett. 2010, 20, 6657;
(b) Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands, M.; Wibawa,
J.; Brotherton, D.; Stimson, L.; Clark, V.; Owen, J.; Bawden, L.; Box, G.; Bone, E.;
Mortenson, P.; Hardcastle, A.; van Meurs, S.; Eccles, S.; Raynaud, F.; Aherne, W.
J. Med. Chem. 2010, 53, 8663.
Acknowledgments
This research was supported in part by a grant from the Na-
tional Institute of General Medical Sciences (NIGMS 38627 to
S.L.S.) and in part with Federal funds from the National Cancer
Institute’s Initiative for Chemical Genetics (ICG), under Contract
No. N01-CO-12400. The content of this publication does not neces-
sarily reflect the views or policies of the Department of Health and
Human Services, nor does the mention of trade names, commercial
products or organizations imply endorsement by the US Govern-
ment. S.L.S is an investigator with the Howard Hughes Medical
Institute.
Supplementary data
Supplementary data associated with this article can be found, in
14. Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.; Haggarty, S. J.;
Warnow, T.; Mazitschek, R. Nat. Chem. Biol. 2010, 6, 238.
15. Wegener, D.; Wirsching, F.; Riester, D.; Schwienhorst, A. Chem. Biol. 2003, 10,
61.
References and notes
16. (a) Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4389; (b) Wong, J. C.; Hong, R.; Schreiber,
S. L. J. Am. Chem. Soc. 2003, 125, 5586.
17. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida,
M.; Wang, X. F.; Yao, T. P. Nature 2002, 417, 455.
1. Cole, P. A. Nat. Chem. Biol. 2008, 4, 590.
2. de Ruijter, A. J.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van Kuilenburg, A. B.
Biochem. J. 2003, 370, 737.
3. Taunton, J.; Hassig, C. A.; Schreiber, S. L. Science 1996, 272, 408.
4. Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I. Cancer Lett. 2009, 277, 8.