Journal of the American Chemical Society
COMMUNICATION
while new 11B and 31P{1H} resonances appeared at À12.8 and
50.1 ppm, respectively. 19F signals corresponding to two inequi-
valent C6F5 groups suggest the formation of a substituted cyclic
borate. Crystallography confirmed compound 3 to be the six-
membered borate ring with a phosphonium substituent
(C6F5)2B(CH2CH2CH2CH(PtBu3)CH2) rather than the sim-
ple Lewis-acidÀbase adduct. It is noteworthy that the P adds to
the substituted carbon of the olefin fragment, affording a
substituent that adopts an equatorial position on the chair
confirmation of the six-membered ring. The metric parameters
of this zwitterion are unexceptional. In a similar fashion, the
significantly less sterically encumbered and less nucleophilic PPh3
was used to give the analogous species (C6F5)2B(CH2CH2CH2CH-
(PPh3)CH2) (4) in 90% yield.
In a related reaction, a mixture of [HB(C6F5)2]n and tBu3P in
toluene was exposed to an atmosphere of 1,3-butadiene and
heated at 60 °C for 18.5 h in a closed vessel, during which time a
microcrystalline solid 5 precipitated. NMR spectroscopic and
crystallographic studies affirmed the nature of 5 as the zwitterion
(C6F5)2B(CH2CH2CH(PtBu3)CH2), which was isolated in
62% yield. This cyclic borate product is analogous to 3 and 4
with a phosphonium fragment also adopting a pseudoequatorial
position on the puckered five-membered borate-ring.
would like to dedicate this paper to Professor Gerhard Erker on the
occasion of his 65th birthday.
’ REFERENCES
(1) (a) Power, P. P. Organometallics 2007, 26, 4362–4372.
(b) Nagendran, S.; Roesky, H. W. Organometallics 2008, 27, 457–492.
(c) Martin, D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2011,
2, 389–399. (d) Power, P. P. Nature 2010, 463, 171–177.
(2) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46–76.
(3) (a) Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed.
2010, 49, 9475–9478. (b) Wang, H.; Frohlich, R.; Kehr, G.; Erker, G.
Chem. Commun. 2008, 5966–5968. (c) Chase, P. A.; Jurca, T.; Stephan,
D. W. Chem. Commun. 2008, 1701–1703. (d) Chase, P. A.; Welch, G. C.;
Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050–8053.
(e) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fr€ohlich, R.; Erker,
G. Angew. Chem., Int. Ed. 2008, 47, 7543–7546. (f) Geier, S. J.; Chase,
P. A.; Stephan, D. W. Chem. Commun. 2010, 46, 4884–4886. (g) Sumerin,
V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskel€o, M.; Repo, T.;
Pyykk€o, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117–14119.
(4) (a) Sortais, J.-B.; Voss, T.; Kehr, G.; Frohlich, R.; Erker, G. Chem.
Commun. 2009, 7417–7418. (b) Voss, T.; Chen, C.; Kehr, G.; Nauha, E.;
Erker, G.; Stephan, D. W. Chem.ÀEur, J. 2010, 16, 3005–3008. (c) McCahill,
J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007,
46, 4968–4971.
DFT calculations of the reaction profile confirmed 1b as an
intermediate en route to 3 (see Supporting Information). It is
noteworthy that Erker, Grimme, and co-workers22 have de-
scribed the addition of a linked P/B system to norbornene,
providing experimental and computational evidence for an asyn-
chronously concerted process. These authors concluded that
BÀC bond formation occurs to a larger extent in the transition
state, although the evidence for BÀolefin or PÀolefin interac-
tions was necessarily indirect. In the present study, using a
tethering approach, we have detected an interaction of a Lewis
acidic B center with a pendant alkenyl group by 2D heteronuclear
NOE techniques. This provides a compelling piece of evidence
that the addition reaction of a sterically encumbered Lewis pair to
a pendant vinyl group first forms a boraneÀolefin van der Waals
complex. Subsequent nucleophilic attack by a Lewis base was
used to afford the novel zwitterionic cyclic borate species 3À5.
While studies continue to target further insights into the
mechanistic details of FLP reactions, the utility of this reactivity
as a tool in developing new synthetic strategies is also ongoing.
(5) Stirling, A.; Hamza, A.; Rokob, T. A.; Papai, I. Chem. Commun.
2008, 3148–3150.
(6) Guo, Y.; Li, S. Eur. J. Inorg. Chem. 2008, 2008, 2501–2505.
(7) Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 1997,
119, 10446–10454.
(8) Jones, P. R. J. Org. Chem. 1972, 37, 1886–1889.
(9) Blackwell, J. M.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc.
2002, 124, 1295–1306.
(10) (a) Casey, C. P.; Hallenbeck, S. L.; Wright, J. M.; Landis, C. R.
J. Am. Chem. Soc. 1997, 119, 9680–9690. (b) Casey, C. P.; Klein, J. F.;
Fagan, M. A. J. Am. Chem. Soc. 2000, 122, 4320–4330. (c) Casey, C. P.;
Carpenetti, D. W.; Sakurai, H. J. Am. Chem. Soc. 1999, 121, 9483–9484.
(d) Casey, C. P.; Hallenbeck, S. L.; Pollock, D. W.; Landis, C. R. J. Am.
Chem. Soc. 1995, 117, 9770–9771.
(11) (a) Carpentier, J.-F.; Wu, Z.; Lee, C. W.; Str€omberg, S.;
Christopher, J. N.; Jordan, R. F. J. Am. Chem. Soc. 2000, 122,
7750–7767. (b) Wu, Z.; Jordan, R. F.; Petersen, J. L. J. Am. Chem. Soc.
1995, 117, 5867–5868. (c) Carpentier, J.-F.; Maryin, V. P.; Luci, J.;
Jordan, R. F. J. Am. Chem. Soc. 2001, 123, 898–909.
(12) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–167.
(13) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.;
Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806–5812.
(14) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215–241.
(15) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.
(16) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998,
17, 5492–5503.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental, computational,
b
and crystallographic data. This material is available free of charge
(17) Yu, C.; Levy, G. C. J. Am. Chem. Soc. 1983, 105, 6994–6996.
(18) Rinaldi, P. L. J. Am. Chem. Soc. 1983, 105, 5167–5168.
(19) (a) Ampt, K. A. M.; Aspers, R. L. E. G.; Jaeger, M.; Geutjes, P. E.
T. J.; Honing, M.; Wijmenga, S. S. Magn. Reson. Chem. 2011,
49, 221–230. (b) Li, D.; Sun, C.; Williard, P. G. J. Am. Chem. Soc.
2008, 130, 11726–11736.
’ AUTHOR INFORMATION
Corresponding Author
(20) Pregosin, P. S.; Kumar, P. G. A.; Fernꢀandez, I. Chem. Rev. 2005,
105, 2977–2998.
(21) Neuhaus, D.; Williamson, M. P. The Nuclear Overhauser Effect in
Structural and Conformational Analysis; Wiley-VCH: New York, 2000.
(22) M€omming, C. M.; Fr€omel, S.; Kehr, G.; Fr€ohlich, R.; Grimme,
S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280–12289.
’ ACKNOWLEDGMENT
D.W.S. gratefully acknowledges the financial support of
NSERC of Canada, the award of a Canada Research Chair and a
Killam Research Fellowship. X.Z. is grateful for the support of an
NSERC-CGS Scholarship. The authors thank Dr. Edwin Otten
and Dr. Zach Heiden for fruitful discussions. The peer-reviewers of
the manuscript are also thanked for insightful suggestions. We
12450
dx.doi.org/10.1021/ja205598k |J. Am. Chem. Soc. 2011, 133, 12448–12450