4206
F.-A. Kang, Z. Sui / Tetrahedron Letters 52 (2011) 4204–4206
O
O
Boc
Boc
Boc
1. BH3-L
2. H2O2
HO
HO
N
N
N
+
5
6
10
NMR Yield
1
NMR Yield1
BH3-L (amt, temp, time)
0%
35%
100%
100%
65%
0%
BH3-THF (1 eq, 0'C, 18h)
BH3-Me2S (5 eq, 20'C, 18h)
BH3-Me2S (5 eq, 40'C, 18h)
Scheme 2. Control of chemoselectivity.
scaffold library
compound library
O
O
O
X
O
X
Y
Y
O
Y
N
N
NH
NH
N
NH
NH
O
2nd DOS
Future
1st DOS
NH
O
This Work
Y
N
Application
X
X
O
O
diversity-oriented synthesis
for drug discovery
diversity-oriented synthesis
for scaffold discovery
Scheme 3. A sequential DOS strategy from scaffold discovery to drug discovery.
5. Kang, F.-A.; Kodah, J.; Guan, Q.; Li, X.; Murray, W. V. J. Org. Chem. 2005, 70, 1957.
6. (a) Kang, F.-A.; Jain, N.; Sui, Z. Tetrahedron Lett. 2006, 47, 9021; (b) Kang, F.-A.;
Jain, N.; Sui, Z. Tetrahedron Lett. 2007, 48, 193.
and 10, while the same reaction at 40 °C resulted in compound 10
exclusively.
This DOS protocol generated a scaffold library of the multi-func-
tionalized small spirocycles 7, 9, 11, and 12. Besides the 5,5-spiro-
7. (a) Kang, F.-A.; Sui, Z.; Murray, W. V. J. Am. Chem. Soc. 2008, 130, 11300; (b)
Kang, F.-A.; Sui, Z.; Murray, W. V. Eur. J. Org. Chem. 2009, 461; (c) Kang, F.-A.;
Lanter, J. C.; Cai, C.; Sui, Z.; Murray, W. V. Chem. Commun. 2010, 46, 1347.
8. (a) Kang, F.-A.; Allan, G.; Guan, J.; Jain, N.; Linton, O.; Tannenbaum, P.; Xu, J.;
Zhu, P.; Gunnet, J.; Chen, X.; Demarest, K.; Lundeen, S.; Sui, Z. Bioorg. Med. Chem.
Lett. 2007, 17, 907; (b) Kang, F.-A.; Guan, J.; Jain, N.; Allan, G.; Linton, O.;
Tannenbaum, P.; Chen, X.; Xu, J.; Zhu, P.; Gunnet, J.; Demarest, K.; Lundeen, S.;
Sui, Z. Bioorg. Med. Chem. Lett. 2007, 17, 2531; (c) Kang, F.-A.; Chen, X.; Jain, N.;
Allan, G.; Tannenbaum, P.; Lundeen, S.; Sui, Z. Bioorg. Med. Chem. Lett. 2008, 18,
3687.
cyclic system starting from the
c-lactam described herein, this
general synthetic route can also be adapted to the 5,6- and 5,7-spi-
rocyclic systems (compounds 1 and 2, where n = 2 and 3, respec-
tively) by starting from the corresponding d- and
e-lactams.
More importantly, this work provides the foundation for a sequen-
tial DOS strategy from scaffold discovery to drug discovery
(Scheme 3). The scaffold library generated by the first DOS protocol
will be useful in the second DOS protocol which is a process of two
successive parallel syntheses involving the conversion of the scaf-
fold library to the intermediate library and the conversion of the
intermediate library to the target compound library. Consequently,
this sequential DOS strategy will enable the generation of a large
compound library of multi-functionalized structurally diversified
spirocycles for drug discovery.
In summary, a DOS protocol for scaffold discovery of spirocycles
is described. It is based on a general synthetic route to various spi-
rocyclic keto-lactams and keto-amines involving one main syn-
thetic pathway and three branch synthetic pathways. The
practical synthesis of spirocycles in the scaffold discovery from a
single lactam includes double allylation, ring-closing metathesis,
olefin hydroboration and allylic oxidation. This work provides the
foundation for a sequential DOS strategy from scaffold discovery
to drug discovery.
9. (a) Sannigrahi, M. Tetrahedron 1999, 55, 9007; (b) Kotha, S.; Deb, A. C.; Lahiri,
K.; Manivannan, E. Synthesis 2009, 165.
10. (a) Cossy, J.; Thellend, A. Tetrahedron Lett. 1990, 31, 1427; (b) Cossy, J.; Bouzide,
A.; Pfau, M. Tetrahedron Lett. 1992, 33, 4883; (c) Hollauf, G.; Urban, E.
Heterocycles 1994, 38, 2295; (d) Bouaucheau, C.; Parlier, A.; Rudler, H. J. Org.
Chem. 1997, 62, 7247; (e) Cossy, J.; Bouzide, A. Tetrahedron 1997, 53, 5775; (f)
Cossy, J.; Bouzide, A.; Leblanc, C. J. Org. Chem. 2000, 65, 7257; (g) Bendl, M.;
Eder, M.; Langhammer, I.; Urban, E. Heterocycles 2000, 53, 115; (h) Planas, L.;
Perard-Viret, J.; Royer, J.; Selkti, M.; Thomas, A. Synlett 2002, 1629; (i) Yang, D.;
Yan, Y.; Law, K.; Zhu, N. Tetrahedron 2003, 59, 10465; (j) Hilmey, D. G.;
Paquette, L. A. Org. Lett. 2005, 7, 2067; (k) Pilling, A. W.; Boehmer, J.; Dixon, D. J.
Angew. Chem., Int. Ed. 2007, 46, 5428; (l) Zhou, C.-Y.; Che, C.-M. J. Am. Chem. Soc.
2007, 129, 5828; (m) Pasternak, A.; Goble, S. D.; Doss, G. A.; Tsou, N. N.; Butora,
G.; Vicario, P. P.; Ayala, J. M.; Struthers, M.; DeMartino, J. A.; Mills, S. G.; Yang, L.
Bioorg. Med. Chem. Lett. 2008, 18, 1374; (n) Boddaert, T.; Coquerel, Y.;
Rodriguez, J. Adv. Synth. Catal. 2009, 351, 1744; (o) Li, M.; Dixon, D. J. Org.
Lett. 2010, 12, 3784.
11. Ezquerra, J.; Pedregal, C.; Rubio, A. J. Org. Chem. 1994, 59, 4327.
12. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
13. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
14. Yu, J.-Q.; Corey, E. J. Org. Lett. 2002, 4, 2727.
15. Characterization data for selected compounds in Scheme 1. Compound 4: 1H
NMR (CDCl3, 400 MHz) d 5.75 (m, 2H), 5.15 (s, 2H), 5.11 (m, 2H), 3.61 (t,
J = 8 Hz, 2H), 2.36 (m, 2H), 2.26 (m, 2H), 1.90 (t, J = 8 Hz, 2H), 1.54 (s, 9H).
Compound 5: 1H NMR (CDCl3, 400 MHz) d 5.56 (s, 2H), 3.70 (t, J = 8 Hz, 2H), 2.88
(d, J = 16 Hz, 2H), 2.33 (d, J = 12 Hz), 1.98 (t, J = 8 Hz, 2H), 1.56 (s, 9H).
Compound 7: 1H NMR (CDCl3, 400 MHz) d 3.77 (t, J = 6.9 Hz, 2H), 2.73 (d,
J = 18.2 Hz, 1H), 2.57 (m, 1H), 2.34 (m, 2H), 2.21 (d, J = 18.2 Hz, 1H), 2.03 (m,
3H), 1.57 (s, 9H). Compound 11: 1H NMR (CDCl3, 400 MHz) d 3.44 (m, 2 H), 3.32
(s, 1H), 3.26 (s, 1H), 2.35 (m, 2 H), 2.22 (m, 2 H), 1.99 (m, 2 H), 1.86 (m, 2 H),
1.47 (s, 9H).
References and notes
1. Zhao, H.; Akritopoulou-Zanze, I. Expert Opin. Drug Disc. 2010, 5, 123.
2. (a) Hajduk, P. J. Nature 2011, 470, 42; (b) Galloway, W. R. J. D.; Spring, D. R.
Nature 2011, 470, 43.
3. Schreiber, S. Science 2000, 287, 1964.
4. Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362.