Organometallic cis-Dichlorido Ru(II) Ammine Complexes
hydrolysis products as well as the extent of the reactions were veri-
fied by 1H NMR spectroscopy or ESI-MS. For UV/Vis spec-
troscopy, the complexes were dissolved in methanol and diluted
with H2O to give 100 μm solutions (5% MeOH/95% H2O). The
absorbance was recorded at several time intervals at the selected
wavelength (at which the maximum changes in absorbance were
registered) over ca. 4 h at 310 K. The data were then subjected to
kinetic analysis for the first and second aquation steps. Plots of
the change in absorbance with time were computer-fitted to the
appropriate biexponential kinetic equation using Origin version 8.0
(Microcal Software Ltd.) to give the half-lives (t1/2, min) and rate
constants (kn, min–1). For 1H NMR spectroscopy, the complexes
were dissolved in [D4]MeOD and diluted with D2O to give 100 μm
solutions (5% [D4]MeOD/95% D2O). The spectra were acquired at
various time intervals on a Bruker DMX 700 spectrometer (1H =
700 MHz) using 5 mm diameter tubes. All data processing was car-
ried out using XWIN NMR version 2.0 (Bruker U. K. Ltd.). 1H
NMR signals were referenced to dioxane as an internal reference
(δ = 3.71). The relative amounts of RuII arene halido species or
aqua adducts were determined by integration of peaks in 1H NMR
spectra.
(ERC) for funding, Dr Ana María Pizarro for the assistance with
cell testing, Dr Ivan Prokes and Dr Lijiang Song and Mr Philip
Aston of the University of Warwick for their assistance with NMR
and MS instruments, respectively.
[1] B. Rosenberg, L. V. Camp, Nature 1965, 205, 698–699.
[2] B. Rosenberg, L. V. Camp, J. E. Trosko, V. H. Mansour, Nature
1969, 222, 385–386.
[3] B. Rosenberg, L. V. Camp, Cancer Res. 1970, 30, 1799–1802.
[4] M. J. Cleare, J. D. Hoeschele, Bioinorg. Chem. 1973, 2, 187–210.
[5] a) X. Wang, Z. Guo, Dalton Trans. 2008, 12, 1521–1532; b)
A. S. Paraskar, S. Soni, K. T. Chin, P. Chaudhuri, K. W. Muto,
J. Berkowitz, M. W. Handlogten, N. J. Alves, B. Bilgicer, D. M.
Dinulescu, R. A. Mashelkar, S. Sengupta, Proc. Natl. Acad.
Sci. USA 2010, 107, 12435–12440; c) G. Zhao, H. Lin, Curr.
Med. Chem.: Anti-Cancer Agents 2005, 5, 137–147.
[6] a) R. E. Morris, R. E. Aird, P. del Socorro Murdoch, H. Chen,
J. Cummings, N. D. Hughes, S. Parsons, A. Parkin, G. Boyd,
D. I. Jodrell, P. J. Sadler, J. Med. Chem. 2001, 44, 3616–3621;
b) H. Chen, J. A. Parkinson, S. Parsons, R. A. Coxall, R. O.
Gould, P. J. Sadler, J. Am. Chem. Soc. 2002, 124, 3064–3082.
[7] M. Melchart, A. Habtemariam, O. Nováková, S. A. Moggach,
F. P. A. Fabbiani, S. Parsons, V. Brabec, P. J. Sadler, Inorg.
Chem. 2007, 46, 8950–8962.
Rate of Arene Loss: The complexes were dissolved in [D4]MeOD
and diluted with D2O to give 100 μm solutions (5% [D4]MeOD/
[8] M. Melchart, Ph. D. Thesis, University of Edinburgh, 2006.
[9] R. O. Gould, C. L. Jones, D. R. Robertson, T. A. Stephenson,
Cryst. Struct. Commun. 1978, 7, 27–32.
1
95% D2O). Arene loss over time was followed by H NMR spec-
troscopy at 310 K for ca. 4 h.
[10] a) D. R. Robertson, T. A. Stephenson, T. Arthur, J. Organomet.
Chem. 1978, 162, 121–136; b) W. Weber, P. C. Ford, Inorg.
Chem. 1986, 25, 1088–1092; c) Y. Hung, W.-J. Kung, H. Taube,
Inorg. Chem. 1981, 20, 457–463.
[11] S. Grguric-Sipka, I. N. Stepanenko, J. M. Lazic, C. Bartel,
M. A. Jakupec, V. B. Arion, B. K. Keppler, Dalton Trans. 2009,
3334–3339.
[12] a) R. Bobka, J. N. Roedel, B. Neumann, C. Krinninger, P.
Mayer, S. Wunderlich, A. Penger, I.-P. Lorenz, Z. Anorg. Allg.
Chem. 2007, 633, 1985–1994; b) K. J. Wallace, R. Daari, W. J.
Belcher, L. O. Abouderbala, M. G. Boutelle, J. W. Steed, J. Or-
ganomet. Chem. 2003, 666, 63–74; c) S. J. Dickson, M. J. Pa-
terson, C. E. Willans, K. M. Anderson, J. W. Steed, Chem. Eur.
J. 2008, 14, 7296–7305.
[13] a) P. Govindaswamy, Y. A. Mozharivskyj, M. R. Kollipara,
Polyhedron 2004, 23, 3115–3123; b) S. K. Singh, S. Joshi, A. R.
Singh, J. K. Saxena, D. Y. Pandey, Inorg. Chem. 2007, 46,
10869–10876.
[14] a) W. H. Ang, A. De Luca, C. Chapuis-Bernasconi, L. Juillerat-
Jeanneret, M. Lo Bello, P. J. Dyson, ChemMedChem 2007, 2,
1799–1806; b) C. A. Vock, W. H. Ang, C. Scolaro, A. D. Phil-
lips, L. Lagopoulos, L. Juillerat-Jeanneret, G. Sava, R. Scopel-
liti, P. J. Dyson, J. Med. Chem. 2007, 50, 2166–2175.
[15] a) A. Demonceau, A. W. Stumpf, E. Saive, A. F. Noels, Macro-
molecules 1997, 30, 3127–3130; b) L. Delaude, A. Demonceau,
A. F. Noels, Curr. Org. Chem. 2006, 10, 203–215.
[16] a) L. Quebatte, E. Solari, R. Scopelliti, K. Severin, Organome-
tallics 2005, 24, 1404–1406; b) X. Sauvage, Y. Borguet, A. F.
Noels, L. Delaude, A. Demonceau, Adv. Synth. Catal. 2007,
349, 255–265.
Interactions with Nucleobases: The reactions of 5% [D4]MeOD/
95% D2O solutions of the RuII arene complexes (100 μm) with
2 mol equiv. of 9-ethylguanine (9-EtG) were monitored over time.
1H NMR spectra were recorded at 310 K at various time intervals
for 24 h.
Cancer Cell Growth Inhibition: After plating, human ovarian A2780
cancer cells were treated with RuII arene complexes on day 3 at
concentrations ranging from 0.1 to 100 μm. Solutions of the RuII
complexes were made up in 0.125% DMSO to assist dissolution
(0.03% final concentration of DMSO per well in the 96-well plate).
Cells were exposed to the complexes for 24 h, washed, supplied
with fresh medium, allowed to grow for three doubling times (72 h),
and then the protein content measured (proportional to cell sur-
vival) using the sulforhodamine B (SRB) assay.[51]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental data for the X-ray crystal structures of com-
plexes 1a and 2, Tables S1–S3. Mass-to-charge ratios obtained from
ESI-MS spectra for the products of hydrolysis and from nucleobase
interactions, Tables S4 and S5. IC50 values, Table S6. 1H NMR
spectrum of 1 in [D6]acetone solution (Figure S1). Intermolecular
π-π stacking of the benzyl rings of two N,N-dimethylbenzylammo-
nium cations in the crystal structure of [(η6-p-cym)Ru(NH3)Cl2]·
(dmba–H)(PF6) (1a), Figure S2. Kinetic fits for the aquation reac-
1
tions of complexes 1 and 2 (Figure S3). H NMR spectra of com-
plex 1 recorded at different stages of aquation (Figure S4). Time-
dependence 1H NMR spectra of complexes 1 and 2 in the presence
of 9-EtG (Figure S5).
[17] W. F. Schmid, R. O. John, V. B. Arion, M. A. Jakupec, B. K.
Keppler, Organometallics 2007, 26, 6643–6652.
[18] a) M. G. Mendoza-Ferri, C. G. Hartinger, A. A. Nazarov, R. E.
Eichinger, M. A. Jakupec, K. Severin, B. K. Keppler, Organo-
metallics 2009, 28, 6260–6265; b) W. Kandioller, C. G. Hart-
inger, A. A. Nazarov, C. Bartel, M. Skocic, M. A. Jakupec,
V. B. Arion, B. K. Keppler, Chem. Eur. J. 2009, 15, 12283–
12291; c) M. G. Mendoza-Ferri, C. G. Hartinger, M. A. Men-
doza, M. Groessl, A. E. Egger, R. E. Eichinger, J. B. Mangrum,
N. P. Farrell, M. Maruszak, P. J. Bednarski, F. Klein, M. A.
Jakupec, A. A. Nazarov, K. Severin, B. K. Keppler, J. Med.
Chem. 2009, 52, 916–925.
Acknowledgments
S. B.-L. thanks Warwick Postgraduate Research Scholarships/Over-
seas Research Students Awards Scheme (WPRS/ORSAS), U.K.
and Consejo Nacional de Ciencia y Tecnología (CONACyT),
Mexico for funding her research scholarship. We also thank The
European Regional Development Fund/Advantage West Midlands
(ERDF/AWM), Science City and European Research Council
Eur. J. Inorg. Chem. 2011, 3257–3264
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3263