and red-shifted absorption in the visible region, and uniaxial
optical anisotropy along the surface normal. These promising
physical characteristics of TPDCDTS in conjunction with the
complementary absorption of the C70 acceptor in the range of
380–500 nm give appreciable SMOSCs performances with
a PCE up to 3.82%. Further improvement of the device
performance could be achieved by optimizing the donor/
acceptor ratio in the mixed layer, incorporating conductive
doped buffer layers as well as fine-tuning of processing
conditions such as post-annealing and/or substrate heating.
These results will be disclosed in due course.
The authors would like to acknowledge the financial
support from National Science Council of Taiwan (NSC 98-
2112-M-007-028-MY3, 98-2119-M-002-007-MY3).
Notes and references
1 C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
2 (a) Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev., 2009, 109,
5868; (b) Y. Liang and L. Yu, Acc. Chem. Res., 2010, 43, 1227.
3 (a) B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo,
A. Garcia, M. Tantiwiwat and T. Q. Nguyen, Adv. Funct. Mater.,
2009, 19, 3063; (b) H. X. Shang, H. J. Fan, Y. Liu, W. P. Hu,
Y. F. Li and X. W. Zhan, Adv. Mater., 2011, 23, 1554.
4 R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke,
C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß,
C. Uhrich, M. Pfeiffer and P. Bauerle, Adv. Funct. Mater., 2011,
21, 897.
Fig. 3 (a) J–V characteristics and (b) external quantum efficiency of
TPDCDTS:C60 PMHJ (square) and TPDCDTS:C70 PMHJ (circle)
solar cells.
5 B. Walker, C. Kim and T. Q. Nguyen, Chem. Mater., 2011, 23, 470.
6 J. Drechsel, B. Mannig, F. Kozlowski, M. Pfeiffer, K. Leo and
H. Hoppe, Appl. Phys. Lett., 2005, 86, 244102.
heliatek.com.
Jsc of 9.53 mA cmꢀ2, FF of 0.48, and PCE of 3.82%. The
HOMO level of TPDCDTS thin film is as low as ꢀ5.4 eV
determined by photoelectron spectroscopy. The low-lying
HOMO results in a large energy difference relative to the
LUMO of fullerenes (see Fig. S2 in ESIw), leading to the
relatively large Voc values. Interestingly, the FF values of
TPDCDTS:C60 and TPDCDTS:C70 PMHJ devices were close
to each other, suggesting similar blend layer morphologies and
charge carrier percolation networks in both devices.
8 (a) Z. Ning and H. Tian, Chem. Commun., 2009, 5483;
(b) W. Y. Wong and C. L. Ho, J. Mater. Chem., 2009, 19, 4457;
(c) W. Y. Wong and C. L. Ho, Coord. Chem. Rev., 2009, 253, 1709.
9 (a) S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and
L. Roncali, J. Am. Chem. Soc., 2006, 128, 3459; (b) A. Cravino,
P. Leriche, O. Aleveque, S. Roquet and J. Roncali, Adv. Mater.,
2006, 18, 3033; (c) H. Hiroshi, H. Ohishi, M. Tanaka, Y. Ohmori
and Y. Shirota, Adv. Funct. Mater., 2009, 19, 3948.
10 (a) Y. Shirota, J. Mater. Chem., 2000, 10, 1; (b) K. Schulze,
C. Uhrich, R. Schuppel, K. Leo, M. Pfeiffer, E. Brier,
E. Reinold and P. Bauerle, Adv. Mater., 2006, 18, 2872;
(c) S. Steinberger, A. Mishra, E. Reinold, C. M. Muller,
C. Uhrich, M. Pfeiffer and P. Bauerle, Org. Lett., 2011, 13, 90;
(d) S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich,
M. Pfeiffer and P. Bauerle, Chem. Commun., 2011, 47, 1982;
(e) W. Y. Wong, X. Z. Wang, Z. He, A. B. Djuris, C. T. Yip,
K. Y. Cheung, H. Wang, C. S. K. Mak and W. K. Chan, Nat.
Mater., 2007, 6, 521; (f) Q. W. Wang and W. Y. Wong, Polym.
Chem., 2011, 2, 432; (g) W. Y. Wong and C. L. Ho, Acc. Chem.
Res., 2010, 43, 1246.
The difference in Jsc between two cells can be explained by
the wider absorption range of C70 relative to that of C60, which
is also reflected in the external quantum efficiency (EQE)
spectra shown in Fig. 3(b). Both cells show a high and broad
range of EQE around 500–650 nm closely corresponding to
the absorption spectrum of TPDCDTS. However, due to the
supplementary absorption of the C70 in the range of 380–500 nm,
which complementarily covers the spectral range where the
contribution of TPDCDTS thin films is less efficient. Thus, the
EQE spectrum of TPDCDTS : C70 PMHJ device can effectively
cover the entire visible region. The matching of absorption
spectrum range of TPDCDTS and C70 leads to a broader and
higher EQE range, resulting in a higher Jsc value. In addition,
11 J. Ohshita, M. Nodono, H. Kai, T. Watanabe, A. Kunai,
K. Komaguchi, M. Shiotani, A. Adachi, K. Okita, Y. Harima,
K. Yamashita and M. Ishikawa, Organometallics, 1999, 18, 1453.
12 J. H. Hou, H. Y. Chen, S. Q. Zhang, G. Li and Y. Yang, J. Am.
Chem. Soc., 2008, 130, 16144.
13 H. Y. Chen, J. H. Hou, A. E. Hayden, H. C. Yang, K. N. Houk
and Y. Yang, Adv. Mater., 2010, 22, 371.
a
very smooth surface morphology was observed in
14 (a) H. W. Lin, C. L. Lin, H. H. Chang, Y. T. Lin, C.-C. Wu,
Y. M. Chen, R. T. Chen, Y. Y. Chien and K. T. Wong, J. Appl.
Phys., 2004, 95, 881; (b) D. Yokoyama, A. Sakaguchi, M. Suzuki
and C. Adachi, Org. Electron., 2009, 10, 127; (c) D. Yokoyama,
Y. Setoguch, A. Sakaguchi, M. Suzuki and C. Adachi, Adv. Funct.
Mater., 2010, 20, 386.
TPDCDTS and TPDCDTS : C70 thin film with root-mean-
square roughness of 0.95 and 1.04 nm, respectively (see Fig. S4
in ESIw). A smooth morphology of the organic film may result
in more stable device performance.
15 L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh,
S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and
A. I. Tsai, J. Org. Chem., 2010, 75, 4778.
16 S. Ko, H. Choi, M. S. Kang, H. Hwang, H. Ji, J. Kim, J. Ko and
Y. Kang, J. Mater. Chem., 2010, 20, 2391.
In conclusion, we have synthesized a new small-molecule
TPDCDTS as donor material for efficient SMOSC. Due to its
intrinsic structural features, thin films of TPDCDTS show
intriguing physical properties such as low-lying HOMO, broad
c
7874 Chem. Commun., 2011, 47, 7872–7874
This journal is The Royal Society of Chemistry 2011