hydrochloric acid to precipitate the white solids. The precipitated
polymer was collected by filtration, washed with methanol and
dried under vacuum at 40 ◦C to a constant weight to afford 0.54 g
(100% yield) of polybutadiene.
46, 6508; (q) A. Fischbach, F. Perdih, E. Herdtweck and R. Anwander,
Organometallics, 2006, 25, 1626; (r) A. Fischbach, M. Klimpel, M.
Widenmeyer, E. Herdtweck, W. Scherer and R. Anwander, Angew.
Chem., Int. Ed., 2004, 43, 2234; (s) S. Arndt, K. Beckerle, P. Zeimentz,
T. Spaniol and J. Okuda, Angew. Chem., Int. Ed., 2005, 44, 7473; (t) L.
Zhang, T. Suzuki, Y. Luo, M. Nishiura and Z. Hou, Angew. Chem., Int.
Ed., 2007, 46, 1909; (u) N. Ajellal, L. Furlan, C. Thomas, O. Casagrande
and J.-F. Carpentier, Macromol. Rapid Commun., 2006, 27, 338.
3 (a) G. Natta, L. Porri, P. Corradini and D. Morero, Chim. Ind., 1958,
40, 362; (b) G. Natta, L. Porri and A. Carbonaro, Makromol. Chem.,
1964, 77, 126.
4 (a) M. Visseaux, D. Barbier-Baudry, F. Bonnet and A. Dormond,
Macromol. Chem. Phys., 2001, 202, 2485; (b) F. Bonnet, M. Visseaux,
D. Barbier-Baudry and A. Dormond, Macromolecules, 2002, 35, 1143;
(c) C. Boisson, V. Monteil, D. Ribour, R. Spitz and F. Barbotin,
Macromol. Chem. Phys., 2003, 204, 1747.
5 B. Huang, J. He and L. Xu, Acta Polym. Sinica, 1992, 1, 116.
6 W. Cooper, J. Polym. Sci., Part C: Polym. Symp., 1964, 4, 211.
7 (a) M. Zimmermann, K. W. Tornroos and R. Anwander, Angew. Chem.,
Int. Ed., 2008, 47, 775; (b) M. Zimmermann, K. W. Tornroos, H.
Sitzmann and R. Anwander, Chem.–Eur. J., 2008, 14, 7266; (c) R.
Litlabo, M. Enders, K. W. Tornroos and R. Anwander, Organometallics,
2010, 29, 2588.
8 (a) F. Bonnet, M. Visseaux, A. Pereira and D. Barbier-Baudry,
Macromolecules, 2005, 38, 3162; (b) F. Bonnet, M. Visseaux, A. Pereira
and D. Barbier-Baudry, Macromol. Rapid Commun., 2004, 25, 873.
9 (a) D. Baudry-Barbier, N. Andre, A. Dormond, C. Pardes, P. Richard,
M. Visseaux and C. Zhu, Eur. J. Inorg. Chem., 1998, 1721; (b) D.
Barbier-Baudry, F. Bonnet, B. Domenichini, A. Dormond and M.
Visseaux, J. Organomet. Chem., 2002, 647, 167.
Copolymerization of butadiene and isoprene
A typical procedure for the copolymerization was as follows
(Table 2, entry 14): in a glovebox, a toluene solution of 1
(12.5 mL, 10 mmol, 6.4 mg), 0.1 mmol AlMe3, a toluene solution
of [PhC3][B(C6F5)4] (5.0 mL, 10 mmol, 9.2 mg), a toluene solution
of butadiene (5.0 mL, 25 mmol, 1.35 g), and isoprene (2.5 mL,
25 mmol, 1.70 g) were added into a 50 mL reactor. After a
designated period of time, methanol was injected into the system to
quench the polymerization, and the reaction mixture was poured
into a large quantity of methanol containing a small amount of
hydrochloric acid to precipitate the white solids. The precipitated
polymer was collected by filtration, washed with methanol and
dried under vacuum at 40 ◦C to a constant weight to afford 3.05 g
(100% yield) of polybutadiene.
Acknowledgements
We are thankful for the financial support from The National
Natural Science Foundation of China for project Nos. 20674081;
20934006 and The Ministry of Science and Technology of China
for project Nos. 2005CB623802; 2009AA03Z501.
10 Y. Nakayama, Y. Baba, H. Yasuda, K. Kawakita and N. Ueyama,
Macromolecules, 2003, 36, 7953.
11 S. Milione, C. Cuomo, C. Capacchione, C. Zannoni, A. Grassi and A.
Proto, Macromolecules, 2007, 40, 5638.
12 (a) G. Ricci, S. Italia and L. Porri, Macromol. Chem. Phys., 1994,
194, 1389; (b) E. Colamarco, S. Milione, C. Cuomo and A. Grassi,
Macromol. Rapid Commun., 2004, 25, 450.
13 D. Robert, T. P. Spaniol and J. Okuda, Eur. J. Inorg. Chem., 2008, 2801.
14 R. Taube, S. Maiwald and J. Sieler, J. Organomet. Chem., 2001, 621,
327, and references therein.
15 (a) J. Gromada, L. Pichon, A. Mortreux, F. Leising and J.-F. Carpentier,
J. Organomet. Chem., 2003, 683, 44; (b) D. K. Jenkins, Polymer, 1985,
26, 147.
16 D. Liu, Y. Luo, W. Gao and D. Cui, Organometallics, 2010, 29, 1916.
17 (a) X. Xu, X. Xu, Y. Chen and J. Sun, Organometallics, 2008, 27, 758;
(b) E. Lu, W. Gan and Y. Chen, Organometallics, 2009, 28, 2318.
18 (a) S. Li, W. Miao, T. Tang, W. Dong, X. Zhang and D. Cui,
Organometallics, 2008, 27, 718; (b) W. Gao, D. Cui, X. Liu, Y. Zhang
and Y. Mu, Organometallics, 2008, 27, 5889; (c) D. Wang, S. Li, X. Liu,
W. Gao and D. Cui, Organometallics, 2008, 27, 6531.
19 (a) W. Gao and D. Cui, J. Am. Chem. Soc., 2008, 130, 4984; (b) Z.
Jian, D. Cui, Z. Hou and X. Li, Chem. Commun., 2010, 46, 3022; (c) Y.
Yang, K. Lv, L. Wang, Y. Wang and D. Cui, Chem. Commun., 2010, 46,
6150; (d) Z. Jian, S. Tang and D. Cui, Chem.–Eur. J., 2010, 16, 14007;
(e) D. Liu, D. Cui and W. Gao, Sci. China Chem., 2010, 53, 1641; (f) K.
Lv and D. Cui, Organometallics, 2010, 29, 2987; (g) D. Li, S. Li and
D. Cui, Organometallics, 2010, 29, 2186; (h) S. Li, D. Cui, D. Li and
Z. Hou, Organometallics, 2009, 28, 4814; (i) B. Wang, K. Lv and D.
Cui, Macromolecules, 2008, 41, 1983; (j) Y. Yang, Q. Wang and D. Cui,
J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5251.
20 M. Fineman and S. D. Ross, J. Polym. Sci., 1950, 5, 259.
21 A. Zambelli, A. Proto, P. Longo and P. Oliva, Macromol. Chem. Phys.,
1994, 195, 2623.
22 S. Rastogi and G. Ungar, Macromolecules, 1992, 25, 1445.
23 J. C. W. Chein, W.-M. Tsai and M. D. Rausch, J. Am. Chem. Soc., 1991,
113, 8570.
Notes and references
1 (a) Z. Shen, J. Ouyang, F. Wang, Z. Hu, F. Yu and B. Qian, J. Polym.
Sci., Polym. Chem. Ed., 1980, 18, 3345; (b) D. Wilson, Makromol.
Chem., Macromol. Symp., 1993, 66, 273; (c) E. Lauretti, B. Miani and
F. Misttrali, Rubber World, 1994, 210, 34; (d) W. Chen and F. Wang,
Sci. China, Ser. B: Chem., 2009, 52, 1520; (e) M. Nishiura and Z. Hou,
Nat. Chem., 2010, 2, 257; (f) Z. Zhang, D. Cui, B. Wang, B. Liu and Y.
Yang, Struct. Bonding, 2010, 137, 49.
2 (a) K. Scott, Rubber Plast. Age, 1961, 42, 175; (b) Z. Shen, Z. Gong, C.
Zhong and J. Ouyang, Chin. Sci. Bull., 1964, 4, 335; (c) Z. Shen, Inorg.
Chim. Acta, 1987, 140, 7; (d) Z. Shen and J. Ouyang, Handbook of the
Physics and Chemistry of Rare Earth, K. Gschneidner and L. Fleming,
Elsevier, Amsterdam, 1987, Ch. 61 (Rare earth coordination catalysts in
stereospecific polymerization); (e) W. Kuran, Principle of Coordination
Polymerization, John Wiley and Sons Ltd., New York, 2001; (f) L.
Friebe, O. Nuyken and W. Obrecht, Adv. Polym. Sci., 2006, 204, 1;
(g) A. Fischbach and R. Anwander, Adv. Polym. Sci., 2006, 204,
155 and references therein; (h) S. Kaita, Z. Hou and Y. Wakatsuki,
Macromolecules, 1999, 32, 9078; (i) F. Barbotin, V. Monteil, M. Llauro,
C. Boisson and R. Spitz, Macromolecules, 2000, 33, 8521; (j) C.
Boisson, V. Monteil, D. Ribour, R. Spitz and F. Barbotin, Macromol.
Chem. Phys., 2003, 204, 1747; (k) S. Kaita, Z. Hou, M. Nishiura, Y.
Doi, J. Kurazumi, A. Horiuchi and Y. Wakatsuki, Macromol. Rapid
Commun., 2003, 24, 179; (l) S. Kaita, Y. Doi, K. Kaneko, A. Horiuchi
and Y. Wakatsuki, Macromolecules, 2004, 37, 5860; (m) S. Kaita, M.
Yamanaka, A. Horiuchi and Y. Wakatsuki, Macromolecules, 2006, 39,
1359; (n) S. Kaita, Z. Hou and Y. Wakatsuki, Macromolecules, 2001, 34,
1539; (o) A. Fischbach, C. Meermann, G. Eickerling, W. Scherer and
R. Anwander, Macromolecules, 2006, 39, 6811; (p) C. Meermann, K.
Tornroos, W. Nerdal and R. Anwander, Angew. Chem., Int. Ed., 2007,
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 7755–7761 | 7761
©