10.1002/chem.201800765
Chemistry - A European Journal
benzyl group (entries 16-20). In all cases isomer E was
1
predominant with the E/Z ratio determined by H NMR and GC.
Acknowledgements
We thank prof. Alessandro Barge for his help with NMR
elaboration. This work was supported by MIUR.
Traces of the regioisomer deriving from the carbene α-addition
were in some cases detected (see ESI). A plausible mechanism
Keywords: Tosylhydrazones • Alkoxyallenes • Palladium •
Iodide • Dienes
[]
[1]
a) A. Fürstner, C. Nevado, M. Waser, M. Tremblay, C. Chevrier, F.
Teplý, C. Aïssa, E. Moulin, O. Müller, J. Am. Chem. Soc. 2007, 129,
9150-9161; b) S. Scheeff, D. Menche, Beilstein J. Org. Chem. 2017,
13, 1085-1098; c) C. Souris, A. Misale, Y. Chen, M. Luparia, N.
Maulide, Org. Lett. 2015, 17, 4486-4489.
[2]
M. C. Wilson, S.-J. Nam, T. A. M. Gulder, C. A. Kauffman, P. R.
Jensen, W. Fenical, B. S. Moore, J. Am. Chem. Soc. 2011, 133,
1971-1977.
[3]
[4]
J. P. Michael, Nat. Prod. Rep. 1997, 14, 605-618.
a) V. P. Ananikov, O. V. Hazipov, I. P. Beletskaya, Chem. Asian J.
2011, 6, 306-323; b) A. E. Settle, L. Berstis, N. A. Rorrer, Y. Roman-
Leshkov, G. T. Beckham, R. M. Richards, D. R. Vardon, Green
Chem. 2017, 19, 3468-3492; c) B. P. Brachet Etienne Curr. Org.
Chem. 2016, 20, 2136 - 2160.
[5]
a) Z. F. Xi, Acc. Chem. Res. 2010, 43, 1342-1351; b) M. De Paolis,
I. Chataigner, J. Maddaluno, in Stereoselective Alkene Synthesis,
Vol. 327 (Ed.: J. Wang), Springer-Verlag Berlin, Berlin, 2012, pp. 87-
146; c) L. T. Eberlin, F.; Carreaux, F.; Whiting, A.; Carboni, B. ,
Beilstein J. Org. Chem. 2014, 10, 237–250; d) T. Suto, Y. Yanagita,
Y. Nagashima, S. Takikawa, Y. Kurosu, N. Matsuo, T. Sato, N.
Chida, J. Am. Chem. Soc. 2017, 139, 2952-2955.
Scheme 3 Mechanism proposal
The key step of the overall process is the generation of the allyl
Pd(II) complex B by regioselective hydropalladation of the
alkoxyallene. Then, the carbenoid D is formed via nitrogen loss
from the diazo compound promoted by its interaction with the
metal centre. The subsequent migratory insertion into the Pd-C
bond of the η1-allyl complex affords the alkyl Pd species E or F,
depending on the tosylhydrazone. The final diene H or G is
released upon syn abstraction of one β hydride. Iodide is
necessary, in our opinion, to regenerate the active Pd(0) catalyst
from the Pd hydride I by reductive elimination of one equivalent of
HI, neutralised by Et3N. In a normal Heck protocol, iodide is
present due to the oxidative addition on the halogenated partner,
while in this reaction an extra source is needed in order to sustain
the catalytic cycle. It is not clear yet when iodide coordinates the
Pd atom, we believe that is after the hydropalladation step to
generate the intermediate C. The most peculiar feature of this
reaction is the initial hydropalladation which requires the
generation of Pd hydride at the very beginning of the catalytic
cycle. At this stage, only tosylhydrazone NH proton is available,
which is taken by the base to generate t-butanol. At the moment,
we believe that the catalytic cycle starts with the oxidative addition
of a Pd(0) complex into the OH group of the in situ formed alcohol.
This process has been already described, in similar conditions,
also with tertiary alcohols in THF.[34] Preliminary tests indicate that
this hypothesis might be correct (see ESI). Firstly, when the
reaction was run on the pre-formed tosylhydrazone lithium salt
(2aLi) in the absence of t-BuOLi, the yield dropped from 85 to
13%. Secondly, when the required proton was added directly as
t-butanol a yield increase up to 45% was noticed. Finally, the
model reaction carried out reacting either t-BuOD or D-
tosylhydrazone 2a(D) with alcoxyallene 1a showed the formation
[6]
a) H. Matsushita, E. Negishi, J. Am. Chem. Soc. 1981, 103, 2882-
2884; b) F. K. Sheffy, J. K. Stille, J. Am. Chem. Soc. 1983, 105,
7173-7175.
K. Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka, S. Teranishi, J.
Org. Chem. 1979, 44, 55-63.
a) R. Matsubara, T. F. Jamison, J. Am. Chem. Soc. 2010, 132,
6880-6881; b) F. E. Zhurkin, X. Hu, J. Org. Chem. 2016, 81, 5795-
5802.
a) J. Y. Hamilton, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2013,
135, 994-997; bK.-Y. Ye, H. He, W.-B. Liu, L.-X. Dai, G. Helmchen,
S.-L. You, J. Am. Chem. Soc. 2011, 133, 19006-19014.
a) D. P. Todd, B. B. Thompson, A. J. Nett, J. Montgomery, J. Am.
Chem. Soc. 2015, 137, 12788-12791; b) G. W. Kabalka, M. Al-
Masum, Org. Lett. 2006, 8, 11-13.
a) H. L. Shimp, G. C. Micalizio, Chem. Comm. 2007, 4531-4533; b)
T. K. Macklin, G. C. Micalizio, Nat. chem. 2010, 2, 638-643.
a) M. Sidera, S. P. Fletcher, Chem. Comm. 2015, 51, 5044-5047; b)
J. Mateos, E. Rivera-Chao, M. Fañanás-Mastral, ACS Catal. 2017,
7, 5340-5344; c) M. Mailig, A. Hazra, M. K. Armstrong, G. Lalic, J.
Am. Chem. Soc. 2017, 139, 6969-6977.
a) F. Gao, K. P. McGrath, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc.
2010, 132, 14315-14320; b) F. Gao, J. L. Carr, A. H. Hoveyda,
Angew. Chem. Int. Ed. 2012, 51, 6613-6617; c) F. Gao, J. L. Carr,
A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 2149-2161; d) Y. Lee,
K. Akiyama, D. G. Gillingham, M. K. Brown, A. H. Hoveyda, J. Am.
Chem. Soc. 2008, 130, 446-447; e) Y. Huang, M. Fananas-Mastral,
A. J. Minnaard, B. L. Feringa, Chem. Comm. 2013, 49, 3309-3311.
R. K. Sharma, T. V. RajanBabu, J. Am. Chem. Soc. 2010, 132,
3295-3297.
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
M. S. McCammant, L. Liao, M. S. Sigman, J. Am. Chem. Soc. 2013,
135, 4167-4170.
J. Pyziak, J. Walkowiak, B. Marciniec, Chem. Eur. J. 2017, 23, 3502-
3541.
a) V. P. Ananikov, N. V. Orlov, M. A. Kabeshov, I. P. Beletskaya, Z.
A. Starikova, Organometallics 2008, 27, 4056-4061; b) A. U. Barlan,
G. C. Micalizio, Tetrahedron 2010, 66, 4775-4783; c) V. P.
Ananikov, A. S. Kashin, O. V. Hazipov, I. P. Beletskaya, Z. A.
Starikova, Synlett 2011, 22, 2021-2024; d) R. Shen, J. Yang, M.
Zhang, L.-B. Han, Adv. Synth. Catal. 2017, 359, 3626-3637.
a) E. Tayama, Y. Toma, Tetrahedron 2015, 71, 554-559; b) E.
Tayama, S. Saito, Tetrahedron 2016, 72, 599-604; c) J. Maddaluno,
O. Gaonach, Y. Legallic, L. Duhamel, Tetrahedron Lett. 1995, 36,
8591-8594; d) A. Guillam, J. Maddaluno, L. Duhamel, Chem.
Comm. 1996, 1295-1296; e) M. Blangetti, A. Deagostino, C. Prandi,
S. Tabasso, P. Venturello, Org. Lett. 2009, 11, 3914-3917; f) A.
Deagostino, C. Prandi, P. Venturello, Curr. Org. Chem. 2003, 7,
821-839; g) T. Nakano, T. Soeta, K. Endo, K. Inomata, Y. Ukaji, J.
Org. Chem. 2013, 78, 12654-12661.
of D-labelled diene 3a(D), where
a
little amount of
deuteropalladation of sp C of allene 1a is observed. Actually, a
mixture of dienes 3a and 3a(D) was observed in the 1H NMR (see
scheme 1 and figure 2 in ESI), with a high ratio 3a/3a(D) which
suggests that more than one proton source is present in the
reaction milieu. At the beginning it is only the tosylhydrazone
2a(D), which explains D-incorporation in the product. Then the
catalytic cycle itself might sustain the reaction, via an active role
of triethylammonium iodide coming from HI neutralisation. Deeper
investigations are ongoing to elucidate the mechanism.
[18]
In conclusion, we have developed a new method for the selective
synthesis of functionalised conjugated and skipped dienes in high
yield. Iodide is essential to the active Pd(0) species regeneration.
Moreover, the catalytic cycle seems to start with a not common
oxidative addition of Pd(0) into the hydroxyl group of the in situ
formed t-BuOH.
[19]
N. Maulide, C. Souris, F. Frébault, M. Luparia, D. Audisio, CHIMIA
2014, 68, 248-251.
B. Schmidt, S. Audörsch, O. Kunz, Synthesis 2016, 48, 4509-4518.
K. Matsumoto, N. Mizushina, M. Yoshida, M. Shindo, Synlett 2017,
28, 2340-2344.
[20]
[21]
[22]
A. Deagostino, C. Prandi, A. Toppino, P. Venturello, Tetrahedron
2008, 64, 10344-10349.
This article is protected by copyright. All rights reserved.