4356
N. Uddin et al. / Tetrahedron Letters 52 (2011) 4353–4356
References and notes
O
H
O
O
H
O
δ+
N
Ar
N
1. Aza-Henry: (a) Tehshik, Y. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
466–468; (b) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernardi, L.;
Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 7975–7978; (c) Ruano, J. L.; Topp, M.;
Cantarero, J. L.; Alemán, J.; Remuinan, J. M.; Cid, M. B. Org. Lett. 2005, 7, 4407–
4410; (d) Robak, M. T.; Trincado, M.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129,
15110–15111; (e) Trost, B. M.; Lupton, D. W. Org. Lett. 2007, 9, 2023–2026; (f)
Keisuke, T.; Kazuo, N. Adv. Synth. Catal. 2009, 351, 345–347; (g) Chungui, W.;
Zhenghong, Z.; Chuchi, T. Org. Lett. 2008, 10, 1707–1710; (h) Palomo, C.;
Oiarbide, M.; Halder, R.; Laso, A.; Lopez, R. Angew. Chem., Int. Ed. 2006, 45, 117–
120.
2. (a) Bernardi, L.; Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2005,
62, 375–380; (b) Chang, Y.; Yang, J.; Dang, J.; Xue, Y. Synlett 2007, 2283–2285;
(c) Lovick, H. M.; Michael, F. E. Tetrahedron Lett. 2009, 50, 1016–1019; (d)
Rampalakos, C.; Wulff, W. Adv. Synth. Catal. 2008, 350, 1785–1790; (e) Wang,
C.; Dong, X.; Zhang, Z.; Xue, Z.; Teng, H. J. Am. Chem. Soc. 2008, 130, 8606–8607.
3. For reviews on organocatalysis (a) Gaunt, M. J.; Johansson, C. C. C.; McNally, A.;
Vo, N. T. Drug Discovery Today 2007, 12, 8–27; (b) List, B. Adv. Synth. Catal. 2004,
346, 1021–1249; (c) List, B. Org. Biomol. Chem. 2005, 3, 719–724; (d) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175; (e) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2001, 40, 3726–3748; (f) Berkessel, A.; Gröger, H.
Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in
Asymmetric Synthesis; Wiley-VCH: Weinheim, 2005. 1021.
4. (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357; (b)
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43,
1566–1568; (c) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004,
126, 3418–3419; (d) Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem. Soc.
2010, 132, 2880–2882; (e) Rueping, M.; Antonchick, A. P. Org. Lett. 2008, 10,
1731–1734.
5. For reviews on chiral Brønsted acid catalysis, see: (a) Terada, M. Bull. Chem. Soc.
Jpn. 2010, 83, 101–119; (b) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758; (c)
Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999–1010; (d)
Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520–1543; (e)
Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew. Chem., Int. Ed. 2005, 44,
1758–1763; (f) Pihko, P. M. Lett. Org. Chem. 2005, 2, 398–403; (g) Pihko, P. M.
Angew. Chem., Int. Ed. 2004, 43, 2062–2064; (h) Taylor, M. S.; Schreiner, P. R.
Chem. Soc. Rev. 2003, 32, 289–296.
Ar
Ar
δ+
Ph
Ph
H
H
H
O
H
Syn-6
A
H
+
favored
O
N
Ph
H
3
O
O
H
O
H
δ+
O
N
N
H
H
δ+
Ar
Ph
Ph
Ar
Ar
H
H
B
Anti-6
disfavored
Scheme 5. Proposed rationale for the stereoselective formation of 4,6-
diphenyloxazinanone.
at an axial position (Scheme 5). As a result, syn-4,6-diaryloxazina-
none 6 is expected to be the only or a major product.
To our knowledge, the reaction depicted in Scheme 1 is the first
recorded tandem elimination-cycloaddition reaction for the syn-
thesis of an oxazinanone ring system. To date, all of the reported
syntheses for making the oxazinanones 2 require three or more
steps.11 The chiral oxazinanones are employed as auxiliaries for
asymmetric enolate alkylation and aldol reactions,11b and also in
the synthesis of oxazolidinone derivatives.12 Oxazinanone deriva-
tives are of interest because they exhibit antibacterial activity
against gram-positive bacteria and are useful as PR modulators.13
Chiral Brønsted acid-catalyzed syntheses of optically active ana-
logs of oxazinanones are currently under investigation.
In summary, a new C–C bond formation reaction has been
developed using Brønsted acid catalysis. Cyclic oxazinanones are
produced from Boc-imines in one step, resulting in medium to high
yields. The atom-economic process presented here in Scheme 1 is
unprecedented in the area of organic chemistry and should extend
the scope of C–C bond forming reactions.
6. (a) Dudley, M. E.; Morshed, M. M.; Brennan, C. L.; Islam, M. S.; Ahmad, M. S.;
Attu, M.-R.; Branstetter, B.; Hossain, M. M. J. Org. Chem. 2004, 69, 7599–7605;
(b) Branstetter, B.; Hossain, M. M. Tetrahedron Lett. 2006, 47, 221–223; (c)
Islam, M. S.; Brennan, C. L.; Wang, Q.; Hossain, M. M. J. Org. Chem. 2006, 71,
4675–4677.
7. (a) Burlingham, B. T.; Widlanski, T. S. J. Org. Chem. 2001, 66, 7561–7567; (b)
Sterkhova, I. V.; Mescheryakov, V. I.; Chipanina, N. N.; Kuhareva, V. A.;
Aksamentova, T. N.; Turchaninov, V. K.; Shainyan, B. A. Russ. J. Gen. Chem. 2006,
76, 583–589; (c) Bordwell, F. G.; Algrim, D. J. Org. Chem. 1976, 41, 2507–2508;
(d) MacFarlane, D. R.; Forsyth, S. A. Acids and bases in ionic liquids In ACS
Symposium Series, 2003; Vol. 856, pp 264–276.
8. Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518–
6519.
9. Lu, J.-M.; Zhu, Z.-B.; Shi, M. Chem. Eur. J. 2009, 15, 963–971.
Acknowledgments
10. Fisher, M. J.; Overman, L. E. J. Org. Chem. 1990, 55, 1447–1459.
11. (a) Ella-Menye, J.-R.; Sharma, V.; Wang, G. J. Org. Chem. 2005, 70, 463–469; (b)
Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.; Sweet, M. J.; Thomson, J.
E. Org. Biomol. Chem. 2006, 4, 2753–2768; (c) Ella-Menye, J.-R.; Wang, G.
Tetrahedron 2007, 63, 10034–10041.
We thank Professors James M. Cook, Alan W. Schwabacher, and
Dr. Matthew E. Dudley of the University of Wisconsin-Milwaukee
for their suggestions.
12. Osa, Y.; Hikima, Y.; Sato, Y.; Takino, K.; Ida, Y.; Hirono, S.; Nagase, H. J. Org.
Chem. 2005, 70, 5737–5740.
13. (a) Wang, G. Anti-Infect. Agents Med. Chem. 2008, 7, 32–49; (b) Wang, G. Patent
WO 021337, 2008.; (c) Wang, G.; Ella-Menye, J.-R.; Sharma, V. Bioorg. Med.
Chem. Lett. 2006, 16, 2177–2181.
Supplementary data
Supplementary data associated with this article can be found, in