Organic Letters
Letter
Scheme 6. Mechanistic Options for 1,5-Diols
AUTHOR INFORMATION
■
Corresponding Author
Paul E. Floreancig − Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
Author
Jean-Marc I. A. Lawrence − Department of Chemistry,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
United States
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Institutes of Health (R01-GM103886)
for generous funding of this project.
the SNi pathway through perrhenate diester intermediate 42,
which decomposes to form 7-cis. The high yield indicates that
the competing and stereochemically complementary ion pairing
and SNi pathways are both very efficient. The formation of cyclic
perrhenate diesters are also likely intermediates for reactions of
1,3-diol substrates, but the stereochemical information will be
lost as the intermediate cation assumes the proper conformation
for cyclization.
REFERENCES
■
(1) (a) Hirai, Y.; Watanabe, J.; Nozaki, T.; Yokoyama, H.; Yamaguchi,
S. J. Org. Chem. 1997, 62, 776. (b) Yokoyama, H.; Otaya, K.; Kobayashi,
H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Org. Lett. 2000, 2, 2427.
(c) Makabe, H.; Kong, L. K.; Hirota, M. Org. Lett. 2003, 5, 27.
(d) Uenishi, J.; Ohmi, M. Angew. Chem., Int. Ed. 2005, 44, 2756.
(e) Kawai, N.; Lagrange, J.-M.; Ohmi, M.; Uenishi, J. J. Org. Chem.
2006, 71, 4530. (f) Aponick, A.; Li, C.-Y.; Biannic, B. Org. Lett. 2008,
10, 669. (g) Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2009, 74,
244. (h) Tanaka, S.; Seki, T.; Kitamura, M. Angew. Chem., Int. Ed. 2009,
48, 8948. (i) Hanessian, S.; Focken, T.; Oza, R. Org. Lett. 2010, 12,
3172. (j) Aponick, A.; Biannic, B. Org. Lett. 2011, 13, 1330.
(k) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2011, 13, 1334.
(l) Miyata, K.; Kutsuna, H.; Kawakami, S.; Kitamura, M. Angew. Chem.,
Int. Ed. 2011, 50, 4649. (m) Unsworth, W. P.; Stevens, K.; Lamont, S.
G.; Robertson, J. Chem. Commun. 2011, 47, 7659. (n) Mukherjee, P.;
Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 1405.
(o) Ghebreghiorgis, T.; Biannic, B.; Kirk, B. H.; Ess, D. H.; Aponick,
A. J. Am. Chem. Soc. 2012, 134, 16307.
We have demonstrated that dihydropyrans can be prepared
through a Re2O7-catalyzed dehydrative route from monoallylic
1,3- or 1,5-diols, whereby a hydroxy group reacts with the distal
terminus of an appended allyl cation. The reactions proceed
quickly to give the 2,6-trans-isomer with moderate to good levels
of stereocontrol. The trans-isomer is the kinetic product,
resulting from a boat-like transition state, and equilibration
studies show that is also the thermodynamic product due to A1,2-
strain minimization. This stereochemical outcome is comple-
mentary to prior dehydrative cyclizations that proceed through
hydroxy groups reacting at the proximal terminus of appended
allylic cations. Primary allylic alcohols can serve as substrates,
allowing for the formation of enantiomerically enriched
monosubstituted dihydropyrans. Structural variations of cycliza-
tion substrates show that (E)- and (Z)-1,3- and (E)-1,5-
monoallylic diols form the same cation upon ionization as
determined by reaction yields and stereochemical outcomes.
(Z)-1,5-Monoallylic diols, however, react more efficiently and
with stereochemical retention being observed to an unexpect-
edly high degree, suggesting an intriguing SNi mechanism that is
unique to this substitution pattern.
́
(2) (a) Guerinot, A.; Serra-Muns, A.; Gnamm, C.; Bensoussan, C.;
́
Reymond, S.; Cossy, J. Org. Lett. 2010, 12, 1808. (b) Guerinot, A.;
Serra-Muns, A.; Bensoussan, C.; Reymond, S.; Cossy, J. Tetrahedron
2011, 67, 5024. (c) Hanessian, S.; Focken, T.; Oza, R. Tetrahedron
2011, 67, 9870. (d) Zheng, H.; Ghanbari, S.; Nakamura, S.; Hall, D. G.
Angew. Chem., Int. Ed. 2012, 51, 6187. (e) Zhang, F.-Z.; Tian, Y.; Li, G.-
X.; Qu, J. J. Org. Chem. 2015, 80, 1107. (f) Hoshiya, N.; Noda, K.;
Mihara, Y.; Kawai, N.; Uenishi, J. J. Org. Chem. 2015, 80, 7790.
(3) For reviews on Re2O7-mediated transformations, see: (a) Volch-
kov, I.; Lee, D. Chem. Soc. Rev. 2014, 43, 4381. (b) Bellemin-Laponnaz,
S. ChemCatChem 2009, 1, 357. For more specific examples: (c) Hu, J.;
Xu, D.; Zhang, Q.; Shang, Y.; Shi, M.; Huangfu, Y.; Liu, L.; Liang, R.;
Lai, Y.; He, Y.; Gao, J.-m.; Xie, W. RSC Adv. 2016, 6, 52583. (d) Yun, S.
Y.; Hansen, E. C.; Volchkov, I.; Lo, W. Y.; Lee, D. Angew. Chem., Int. Ed.
2010, 49, 4261. (e) Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.;
Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962. (f) Bellemin-Laponnaz,
S.; Gisie, H.; Le Ny, J. P.; Osborn, J. A. Angew. Chem., Int. Ed. Engl.
1997, 36, 976. (g) Narasaka, K.; Kusama, H.; Hayashi, Y. Tetrahedron
1992, 48, 2059.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
Schemes for substrate syntheses, cyclization protocols,
1
stereochemical determinations, and H and 13C NMR
(4) (a) Asari, A. H.; Floreancig, P. E. Angew. Chem., Int. Ed. 2020, 59,
6622. (b) Qin, Q.; Xie, Y.; Floreancig, P. E. Chem. Sci. 2018, 9, 8528.
(c) Rohrs, T. M.; Qin, Q.; Floreancig, P. E. Angew. Chem., Int. Ed. 2017,
56, 10900. (d) Xie, Y.; Floreancig, P. E. Angew. Chem., Int. Ed. 2014, 53,
4926. (e) Xie, Y.; Floreancig, P. E. Angew. Chem., Int. Ed. 2013, 52, 625.
FAIR data, including the primary NMR FID files, for
compounds 6, 7, 10−37, S1, S2, and S5 (ZIP)
D
Org. Lett. XXXX, XXX, XXX−XXX