Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Preparative-Scale KR of Substrate 17
NY, 1997. (b) Juaristi, E., Soloshonok, V. A., Eds. In Enantioselective
Synthesis of β-Amino Acids, 2nd ed.; Wiley: Hoboken, NJ, 2005.
(c) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991. (d) Cheng, R. P.;
Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219. (e) Seebach,
D.; Beck, A. K.; Bierbaum, D. J. Chem. Biodivers. 2004, 1, 1111. (f) Kuhl, A.;
Hahn, M. G.; Dumiꢀc, M.; Mittendorf, J. Amino Acids 2005, 29, 89.
(2) (a) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett
2001, 1813. (b) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Rev.
2007, 107, 4437.(c) Chen, J.; Kuznetsova, L. V.; Ungreanu, I. M.; Ojima,
I. Recent advances in synthesis of R-hydroxy-β-amino acids and their use
in SAR studies of taxane anticancer agents. In ref 1b; pp 447À476.
(3) (a) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc.
Chem. Res. 2004, 37, 592. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.
Chem. Rev. 2008, 108, 3988. (c) Aranda, M. T.; Perez-Faginas, P.;
Gonzalez-Muniz, R. Curr. Org. Chem. 2009, 6, 325. (d) For a recent
example, see: He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 418.
(4) (a) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
(b) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
(5) [2 + 2] cycloaddition of olefins with chlorosulfonyl isocyanate is
especially widely used: (a) Graf, R.; Lohaus, G.; Borner, K.; Schmidt, E.;
Bestian, H. Angew. Chem., Int. Ed. Engl. 1962, 1, 481. (b) Rasmussen,
J. K.; Hassner, A. Chem. Rev. 1976, 76, 389. (c) For recent examples, see:
Lee, M. R.; Stahl, S. S.; Gellman, S. H. Org. Lett. 2008, 10, 5317 For other
non-enantioselective methods, see refs 3b and 3c.
(6) (a) Brieva, R.; Crich, J. Z.; Sih, C. J. J. Org. Chem. 1993, 58, 1068.
(b) Forrꢀo, E.; F€ul€op, F. Mini-Rev. Org. Chem. 2004, 1, 93.
(7) Noncatalytic KR of β-lactams has been exploited in the semi-
synthesis of taxoids. Chiral alkoxides derived from baccatin III have been
shown to open racemic N-benzoyl- and N-Boc-β-lactams with significant
levels of diastereoselectivity. See, e.g.: (a) Holton, R. A., Biediger, R.J. U.
S. Patent 5,243,045, 1993. (b) Holton, R. A.; Biedinger, R. J.; Boatman,
P. D. Semisynthesis of Taxol and Taxotere. In Taxol Science and
Applications; Suffness, M., Ed.; CRC: Boca Raton, FL, 1995; 97.
(c) Ojima, I.; Slater, J. C. Chirality 1997, 9, 487. (d) Lin, S.; Geng, X.;
Qu, C.; Tynebor, R.; Gallagher, D. J.; Pollina, E.; Rutter, J.; Ojima, I.
Chirality 2000, 12, 431.
(8) An alternative nonenzymatic, catalytic method for the KR of
β-lactams has been recently developed in our laboratory: Yang, X.;
Bumbu, V. D.; Birman, V. B. Org. Lett. in press, DOI: 10.1021/
ol201911z.
(9) Yang, X.; Lu, G.; Birman, V. B. Org. Lett. 2010, 12, 892.
(10) For recent reviews, see: (a) Turner, N. J. Curr. Opin. Chem. Biol.
2010, 14, 115. (b) Pellissier, H. Adv. Synth. Catal. 2011, 353, 659.
(11) For the development of amidine-based catalysts 3À5, see:
(a) Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351. (b) Birman, V. B.;
Jiang, H. Org. Lett. 2005, 7, 3445. (c) Birman, V. B.; Li, X. Org. Lett. 2008,
10, 1115.
Figure 2. Proposed mode of enantiodiscrimination. The Brønsted acid
is omitted for the sake of simplicity.
substrate should lead to higher enantioselectivity by suppressing
the attack from that face, whereas substitution on both faces
should prevent the reaction altogether. The data in Table 3 are
fully consistent with this prediction.
In conclusion, we have developed the first nonenzymatic
method for the asymmetric opening of the β-lactam ring,
affording good to excellent enantioselectivities. In addition to
providing a new route to enantioenriched β-amino acid deriva-
tives, this study highlights a new facet in the chemistry of
amidine-based catalysts. Further elucidation of the origin of
enantioselectivity in this transformation and its application to
new classes of substrates will be the subject of our future studies.
(12) For an earlier report on the use of a Brønsted acid in combina-
tion with an enantioselective acyl transfer catalyst, see:Liang, J.; Ruble,
J. C.; Fu, G. C. J. Org. Chem. 1998, 63, 3154.
(13) (()-Oxazinones have been resolved both enzymatically and
nonenzymatically: (a) Berkessel, A.; Cleemann, F.; Mukherjee, S. Angew.
Chem., Int. Ed. 2005, 44, 7466. (b) Berkessel, A.; Jurkiewicz, I.; Mohan,
R. ChemCatChem 2011, 3, 319.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
characterization data. This material is available free of charge via
’ AUTHOR INFORMATION
(14) Enantioselectivity in kinetic resolution is expressed in terms of
selectivity factors denoted as “s”, “E”, or “krel” and defined as the ratio of
reaction rates of the fast- and the slow-reacting enantiomers of the
starting material: s = kfast/kslow. In the KR of racemic mixtures, it is
usually calculated from the ee values of the product and the unreacted
starting material: s = ln[(1 À C)(1 À eeSM)]/ln[(1 À C)(1 + eeSM)]),
Corresponding Author
’ ACKNOWLEDGMENT
wherein C is conversion and can be calculated as: C = eeSM/(eeSM
+
We thank National Science Foundation for the financial
support of our study (CHE-1012979).
eePR). For more details, see ref 4.
(15) ABC-catalyzed KR of alcohols: see, e.g. ref 9 and: (a) Birman,
V. B.; Guo, L. Org. Lett. 2006, 8, 4859. (b) Li, X.; Liu, P.; Houk,
K. N.; Birman, V. B. J. Am. Chem. Soc. 2008, 130, 13836. (c) Xu, Q.;
Zhou, H.; Geng, X.; Chen, P. Tetrahedron 2009, 65, 2232. (d) Shiina, I.;
Nakata, K.; Ono, K.; Sugimoto, M.; Sekiguchi, A. Chem.—Eur. J. 2010,
’ REFERENCES
(1) For reviews on β-amino acids and β-peptides, see: (a) Juaristi, E.,
Ed. In Enantioselective Synthesis of β-Amino Acids; Wiley-VCH: New York,
13904
dx.doi.org/10.1021/ja2058633 |J. Am. Chem. Soc. 2011, 133, 13902–13905