measurements were carried out under argon in a three-electrode
cell using 0.1 M Bu4NPF6 in anhydrous CH3CN as the sup-
porting electrolyte. The polymers were coated on a platinum-
working electrode. The CV curves were recorded referenced to an
Ag quasi-reference electrode, which was calibrated using
a ferrocene/ferrocenium (Fc/Fc+) redox couple (4.8 eV below the
vacuum level) as an external standard. The E1/2 of the Fc/Fc+
redox couple was found to be 0.40 V versus the Ag quasi-refer-
ence electrode. Therefore, the HOMO and LUMO energy levels
Keithley 2400 source meter. The external quantum efficiency
(EQE) was performed using a Jobin-Yvon Triax spectrometer,
a Jobin-Yvon xenon light source, a Merlin lock-in amplifier,
a calibrated Si UV detector, and an SR570 low noise current
amplifier.
Acknowledgements
This work was financially supported by Sustainable Development
Technology Canada (SDTC). The authors wish to thank Ms R.
Movileanu, Mr E. Estwick, Mr H. Fukutani, Mr G. Robertson,
and Mr G. J. Gardner at NRC for their technical support.
of the polymers can be estimated using the empirical EHOMO
onset
¼
onset
ꢁ(Eox
+ 4.40) eV and ELUMO ¼ ꢁ(Ered
and Ered
+ 4.40) eV,
onset
onset
respectively, where Eox
are the onset potentials
for oxidation and reduction relative to the Ag quasi-reference
electrode, respectively.
References
Device fabrication and characterization
€
1 S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107,
1324.
The hole mobilities of P1 and P2 were measured using organic
ꢁ
2 B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed., 2008,
47, 58.
field-effect transistor (OFET) measurements. A heavily doped
n-Si wafer with an overlayer of SiO2 (230 nm, Ci ¼ 15 nF cmꢁ2
)
3 G. Dennler, M. C. Scharber and C. Brabec, Adv. Mater., 2009, 21, 1323.
4 C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia and
S. P. Williams, Adv. Mater., 2010, 22, 3839.
5 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science,
1995, 270, 1789.
was used as the substrate. With bottom contact configuration,
sputtered gold source and drain electrodes were used to contact
the polymer film. An interdigitated layout was used for the
OFET where the channel length and width are 20 mm and 1 mm,
respectively. A chloroform or 1,2-dichlorobenzene solution of
the desired polymer was spin cast to cover the source and drain
electrodes. The OFETs were characterized inside a dark box at
room temperature under nitrogen protection with a semi-
conductor parameter analyser (HP4145A). The hole mobilities
were calculated in the saturation regime at VDS ¼ ꢁ100 V using
the following equation IDS ¼ (W/2L)mCi(VG ꢁ VT),2 where VDS
is the source–drain voltage, IDS is the source–drain current,
W and L are, respectively, the channel width and length, m is the
field-effect mobility, Ci is the capacitance per unit area of the
SiO2 layer, and VG and VT are, respectively, the gate voltage and
threshold voltage.27,28
ꢁ
6 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,
D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297.
7 C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge
ꢁ
and J. M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 7595.
8 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger
and G. C. Bazan, Nat. Mater., 2007, 6, 497.
9 J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim,
K. Lee, G. C. Bazan and A. J. Heeger, J. Am. Chem. Soc., 2008,
130, 3619.
10 C. V. Hoven, X. D. Dang, R. C. Coffin, J. Peet, T. Q. Nguyen and
G. C. Bazan, Adv. Mater., 2010, 22, E63.
11 H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu,
Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649.
12 Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu,
Adv. Mater., 2010, 22, E1.
€
13 M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf,
The BHJ solar cells were prepared on commercial glass slides
coated with patterned ITO. The thickness and sheet resistance of
the ITO are 150 nm and 12 U per square, respectively. The active
area of each solar cell device is 1.0 cm2 with a length : width ratio
of 4 : 1. The substrates were cleaned by sonicating sequentially in
detergent, DI water, acetone, and isopropanol. Immediately
prior to device fabrication, the substrates were treated in a
UV-ozone oven for 15 min. First, a poly(3,4-ethylenedioxy-
thiophene)–poly(styrene sulfonate) (PEDOT–PSS) thin film (30
nm) was spin-coated and then baked at 140 ꢂC for 15 min.
Secondly, an active layer was spin-coated on top of the PEDOT–
PSS from a chloroform or 1,2-dichlorobenzene solution of
polymer:PC61BM with a weight ratio of 1 : 2. In the case of the
devices using an additive, 1,8-diiodooctane with a 3% volume
ratio was added to the solutions before use. Finally, 2 nm of LiF
and 120 nm of Al were deposited on the top of the active layer in
a vacuum of 5 ꢃ 10ꢁ7 Torr to form the top electrode. The solar
cells (with no protective encapsulation) were then tested in air
under AM 1.5G irradiation of 100 mW cmꢁ2 (ScienceTech
Inc., SS 500W solar simulator) calibrated with a KG5 filter
covered silicon photovoltaic solar cell traced to the National
Renewable Energy Laboratory (NREL). Current–voltage (I–V)
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
14 C. Shi, Y. Yao, Y. Yang and Q. Pei, J. Am. Chem. Soc., 2006, 128,
8980.
15 G. Daoust and M. Leclerc, Macromolecules, 1991, 24, 455.
16 J. Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu and G. Li,
J. Am. Chem. Soc., 2009, 131, 15586.
17 H. Pan, Y. Li, Y. Wu, P. Liu, B. Ong, S. Zhu and G. Xu, Chem.
Mater., 2006, 18, 3237.
18 S. Bhanu and F. Scheinmann, J. Chem. Soc., Perkin Trans. 1, 1979,
1218.
19 G. Koeckelberghs, L. De Cremer, A. Persoons and T. Vrbiest,
Macromolecules, 2007, 40, 4173.
€
20 D. A. M. Egbe, L. H. Nguyen, H. Hoppe, D. Muhlbacher and
N. S. Sariciftci, Macromol. Rapid Commun., 2005, 26, 1389.
21 Z. K. Chen, W. Huang, L. H. Wang, E. T. Kang, B. J. Chen, C. S. Lee
and S. T. Lee, Macromolecules, 2000, 33, 9015.
22 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-
^
Plesu, M. Belletete, G. Durocher, Y. Tao and M. Leclerc, J. Am.
Chem. Soc., 2008, 130, 732.
23 S. Wakim, B. R. Aich, Y. Tao and M. Leclerc, Polym. Rev., 2008, 48,
432.
24 H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu and G. Xu, J. Am.
Chem. Soc., 2007, 129, 4112.
25 I. Osaka, T. Abe, S. Shinamura, E. Miyazaki and K. Takimiya, J. Am.
Chem. Soc., 2010, 132, 5000.
26 K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533.
27 V. Coropceanu, J. Cornil, D. A. Silva Filho, Y. Olivier, R. Silbey and
ꢁ
J. L. Bredas, Chem. Rev., 2007, 107, 926.
ꢁ
28 A. R. Murphy and J. M. J. Frechet, Chem. Rev., 2007, 107, 1066.
characteristics were recorded using
a
computer-controlled
10928 | J. Mater. Chem., 2011, 21, 10920–10928
This journal is ª The Royal Society of Chemistry 2011