Journal of the American Chemical Society
COMMUNICATION
for the construction of light-harvesting systems with large numbers
of chromophores. These results prove that the synthesis of
porphyrin dendrimers using snowflake architectures is a valuable
tool for the construction of artificial light-harvesting antennae.
(12) Absolute quantum yields of the fluorescence were measured
using an Otsuka Electronics QE-1100 spectrometer with an MCPD-9800
detector.
(13) Yamanaka, K.; Okada, T.; Goto, Y.; Tani, T.; Inagaki, S. Phys.
Chem. Chem. Phys. 2010, 12, 11688.
(14) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer: New York, 2006.
’ ASSOCIATED CONTENT
(15) Pettersson, K.; Kyrychenko, A.; R€onnow, E.; Ljungdahl, T.;
Martensson, J.; Albinsson, B. J. Phys. Chem. A 2006, 110, 310.
(16) Minor decay components were observed because of the
fluorescence overlaps at 660 nm (TP-Por* and TE-Por*): τ ≈ 240 ps
(20%) and 1.9 ns (12%).
ꢄ
S
Supporting Information. Detailed synthetic procedures
b
and spectral data. This material is available free of charge via the
(17) The reverse energy-transfer processes from DE-Por* to
TP-Por and from TE-Por* to TP-Por (or DE-Por) (EN1Rꢀ3R in
Table S2) may occur because of the small energy gaps between these
excited states (Figure 5). The F€orster mechanism suggests that the
reverse energy-transfer rate constants are approximately one-tenth of
those for the forward reactions (Table S2). To avoid overparametriza-
tion and ensure their reliability for analysis, we treated the decay data
using the consecutive reaction scheme without these reverse energy
transfers.
’ AUTHOR INFORMATION
Corresponding Author
kozaki@sci.osaka-cu.ac.jp; yamanaka@mosk.tytlabs.co.jp;
’ ACKNOWLEDGMENT
This work was partially supported by Grants 23350022 and
22350066 from JSPS. We thank for Otsuka Electronics for mea-
surements of fluorescence quantum yields.
’ REFERENCES
(1) (a) Barber, J.; Andersson, B. Nature 1994, 370, 31. (b) Umena,
Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Nature 2011, 473, 55.
(c) Blankenship, R. E. Molecular Mechanism of Photosynthesis; Blackwell
Science: Oxford, U.K., 2002.
(2) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996,
118, 9635.
(3) (a) Hippius, C.; van Stokkum, I. H. M.; Gs€anger, M.; Groeneveld,
M. M.; Williams, R. E.; W€urthner, F. J. Phys. Chem. C 2008, 112, 2476.
(b) Diring, S.; Puntoriero, F.; Nastasi, F.; Campagna, S.; Ziessel, R. J. Am.
Chem. Soc. 2009, 131, 6108.
(4) (a) Harvey, P. D.; Stern, C.; Guilard, R. Bio-inspired Molecular
Devices Based on Systems Found in Photosynthetic Bacteria. In Hand-
book of Porphyrin Science; Kadash, K. M., Smith, K. M., Guilard, R., Eds.;
World Scientific: San Diego, CA, 2000; Vol. 11, Chapter 49, pp 1ꢀ179.
(b) Imahori, H. J. Phys. Chem. B 2004, 108, 6130. (c) Satake, A.; Kobuke,
Y. Tetrahedron 2005, 61, 13.
(5) (a) Aratani, N.; Kim, D.; Osuka, A. Acc. Chem. Res. 2009,
42, 1922. (b) Kozaki, M.; Uetomo, A.; Suzuki, S.; Okada, K. Org. Lett.
2008, 10, 4477. (c) Choi, M.; Aida, T.; Yamazaki, T.; Yamazaki, I. Angew.
Chem., Int. Ed. 2001, 40, 3194. (d) Li, J.; Ambroise, A.; Yang, S. I.; Diers,
J. R.; Seth, J.; Wack, C. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am.
Chem. Soc. 1999, 121, 8927.
(6) For light-harvesting antenna containing varieties of
porphyrins, see: (a) Song, H.-E.; Kirmaier, C.; Schwartz, J. K.; Hindin,
E.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2006,
110, 19131. (b) Nakano, A.; Osuka, A.; Yamazaki, I.; Yamazaki, T.;
Nishimura, Y. Angew. Chem., Int. Ed. 1998, 37, 3023.
(7) (a) Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994,
264, 1105. (b) Taylor, P. N.; Huuskonen, J.; Rumbles, G.; Aplin, R. T.;
Williams, E.; Anderson, H. L. Chem. Commun. 1998, 909. (c) Nakano,
A.; Osuka, A.; Yamazaki, T.; Nishimura, Y.; Akimoto, S.; Yamazaki, I.;
Itaya, A.; Murakami, M.; Miyasaka, H. Chem.—Eur. J. 2001, 7, 3134.
(8) (a) Kozaki, M.; Okada, K. Org. Lett. 2004, 6, 485. (b) Kozaki, M.;
Akita, K.; Okada, K. Org. Lett. 2007, 9, 1509. (c) Kozaki, M.; Akita, K.;
Okada, K. Org. Lett. 2007, 9, 3315.
(9) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(10) (a) Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991,
32, 2465. (b) Wu, Z.; Moore, J. S. Tetrahedron Lett. 1994, 35, 5539.
(11) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 16, 4467. (b) Wagner, R. W.; Ciringh, Y.; Clausen, C.; Lindsey,
J. S. Chem. Mater. 1999, 11, 2974.
13279
dx.doi.org/10.1021/ja2050343 |J. Am. Chem. Soc. 2011, 133, 13276–13279