3976
A. Leydier et al. / Tetrahedron Letters 52 (2011) 3973–3977
1.3 mL of triethylamine (9.2 mmol) in 30 mL of dry CH2Cl2. After
18 h under stirring, the mixture was washed with water
(2 ꢀ 50 mL), brine (50 mL), then dried over MgSO4 and evaporated
to dryness. The residue was purified by silica gel column chroma-
tography (EtOAc3/Cyclohexane 1) to give 7 (1.45 g, 48%) as a white
powder. 1H NMR (CDCl3, 300 MHz, 25 °C) d (ppm): 7.92 (d,
J = 9.2 Hz, 2H, Ar–H), 7.84 (d, J = 8.3 Hz, 2H, Ar–H), 7.38 (d,
J = 9.2 Hz, 2H, Ar–H), 7.22–7.30 (m, 4H, Ar–H), 7.18 (d, J = 8.3 Hz,
2H, Ar–H), 3.99 (m, 2H, O–CH2–CH2–NH2), 3.87 (m, 2H, O–CH2–
CH2–NH2), 2.62 (br s, 4H, O–CH2–CH2–NH2). 13C NMR (CDCl3,
75 MHz, 25 °C): 154.8 (Ar–C), 134.6 (Ar–C), 130.4 (Ar–CH), 129.9
(Ar–CH), 129.1 (Ar–CH), 127.3 (Ar–CH), 126.7 (Ar–CH), 124.5
(Ar–C), 119.0 (Ar–C), 115.9 (Ar–CH), 71.2, (CH2), 41.2 (CH2) HRMS
(ESI): calcd for C24H24N2O2: 372.1838; found: 372.1835. Anal.
Calcd for C24H24N2O2: C, 77.39; H, 6.49; N, 7.52; O, 8.59. Found:
C, 77.12; H, 6.71; N, 7.23.
1.017 g of 7 (1 mmol) and 100 mg of Pd/C (5%) in 25 mL of THF
were stirred under 1 atm of H2. After 36 h, the mixture was filtered
on celite, evaporated to dryness to give 8 (633 mg, 98%) as a grey
foam. 1H NMR (CDCl3, 300 MHz, 25 °C) d (ppm): 7.51–7.63 (m,
4H, Ar–H), 6.80–7.31 (m, 34H, Ar–H), 4.99 (s, 4H, O–CH2–Ar),
4.58 (AB d, 2H, 2J(H,H) = 10.9 Hz, 2H, O–CH2–Ar), 4.51 (AB d,2H,
2J(H,H) = 10.7 Hz, 2H, O–CH2–Ar), 3.72 (t, J = 5.3 Hz, 4H, O–CH2–
CH2–NH), 3.10 (m, 4H, O–CH2–CH2–NH) 13C NMR (CDCl3,
75 MHz, 25 °C): 165.7 (Ar–C), 154.1 (Ar–C), 152.2 (Ar–C), 146.8
(Ar–C), 137.1 (Ar–C), 136.8 (Ar–C), 134.3 (Ar–C), 129.9 (Ar–CH),
129.8 (Ar–C), 129.1 (Ar–CH), 129.0 (Ar–CH), 128.8 (Ar–CH), 128.7
(Ar–CH), 128.6 (Ar–CH), 128.4 (Ar–CH), 128.3 (Ar–CH), 128.2
(Ar–CH), 128.1 (Ar–CH), 126.7 (Ar–CH), 125.6 (Ar–C), 124.6 (Ar–
CH), 124.1 (Ar–CH) 123.2 (Ar–C), 120.7 (Ar–C), 116.9 (Ar–CH),
133.9 (Ar–C), 133.7 (Ar–C), 130.5 (Ar–CH), 130.2 (Ar–CH), 129.9
(Ar–C), 129.6 (Ar–CH), 128.9 (Ar–CH), 128.5 (Ar–CH), 127.2 (Ar–
CH), 125.3 (Ar–CH), 124.6 (Ar–CH), 124.4 (Ar–CH), 120.9 (Ar–C),
116.2 (Ar–CH), 105.8 (Ar–CH), 79.33 (CH2), 68.3 (CH2), 39.6 (CH2)
HRMS (ESI): calcd for
849.2901. Anal. Calcd for C50H42N2O8: C, 72.63; H, 5.12; N, 6.78;
O, 15.48. Found: C, 72.61; H, 5.31; N, 6.60.
C
50H42N4O8Na+: 849.2900; found:
774 mg of 10 (0.936 mmol) were added in 25 mL 32% HCl mixed
with 65 mL Acetic. After 96 h under stirring, the mixture was evap-
orated, 100 mL water were added. The mixture was washed with
CH2Cl2 (3 ꢀ 50 mL).The combined organic layers were washed
with water (3 ꢀ 50 mL), brine (50 mL), then dried over MgSO4
and evaporated to dryness to give 11 (593 mg, 98%) as a yellow
foam. 1H NMR (CDCl3, 300 MHz, 25 °C) d (ppm): 8.50 (br s, 2H,
OH), 7.93 (br s, 2H, NH), 7.70 (d, J = 8.9 Hz, 2H, Ar–H), 7.64 (d,
J = 7.9 Hz, 2H, Ar–H), 7.01–7.31 (m, 10H, Ar–H), 6.95 (d,
J = 8.1 Hz, 2Ar–H), 6.85 (d, J = 8.7 Hz, 2Ar–H), 3.91–4.07 (m, 4H,
O–CH2–CH2–NH), 3.40 (br s, 4H, O–CH2–CH2–NH). 13C NMR
(CDCl3, 75 MHz, 25 °C) d (ppm): 159.1 (C=O), 157.2 (Ar–C), 153.9
(C@O), 136.9 (Ar–C), 134.7 (Ar–CH), 134.3 (Ar–C), 130.1 (Ar–CH),
130.0 (Ar–CH), 128.3 (Ar–C), 126.9 (Ar–CH), 125.4 (Ar–CH), 124.5
(Ar–CH), 121.4 (Ar–C), 116.7 (Ar–CH), 116.6 (Ar–CH), 113.0 (Ar–
CH), 68.9 (CH2), 40.1 (CH2). HRMS (ESI): calcd for C36H30N4O8Na+:
669.1961; found: 669.1961. Anal. Calcd for C36H30N4O8: C, 66.87;
H, 4.68; N, 8.66; O, 19.79. Found: C, 66.66; H, 4.82; N, 8.29.
Acknowledgements
We thank Dr. Bouchu, Genevieve Herault and Marie-Christine
Duclos for analytical assistance. This work was supported by a pro-
gram of Interdisciplinary Research called ‘Nuclear and Environ-
mental Toxicology, Tox-Nuc-E’ funded by the Commissariat à
l’Energie Atomique (CEA) and Centre National pour la Recherche
Scientifique (CNRS).
115.9 (Ar–CH), 76.2 (CH2), 71.5 (CH2), 68.4 (CH2), 39.4 (CH2).
+
HRMS (ESI): calcd for
C
66H57N2O8
:
1005.4115; found:
1005.4118. Anal. Calcd for C66H56N2O8: C, 78.86; H, 5.62; N, 2.79;
O, 12.73. Found: C, 79.14; H, 5.53; N, 2.60.
Compound 8: (183 mg, 0.27 mmol) in 96% H2SO4 (2 mL) was stir-
red at 50 °C for 16 h. The mixture was then allowed to cool to room
temperature, poured in Et2O (50 mL). The resulting precipitate was
filtered off under argon and dried under vacuum to give 9 as a hygro-
scopic green powder (200 mg, 75%). 1H NMR (D2O, 300 MHz, 25 °C) d
(ppm): 8.07 (d, J = 9 Hz, 2H, Ar–H), 7.48–7.58 (m, 6H, Ar–H), 7.33 (d,
2H, J = 2.4 Hz), 7.14 (d, J = 9 Hz, 2H, Ar–H), 6.80 (d, J = 2.4 Hz, 2H, Ar–
H), 4.02–4.08 (m, 4H, CH2), 3.31–3.37 (m, 4H, CH2). 13C NMR (D2O,
75 MHz, 25 °C) d (ppm): 171.6 (C@O), 158.9 (Ar–C), 155.9 (Ar–C),
138.1 (Ar–C), 134.8 (Ar–C), 132.5 (Ar–C), 131.9 (Ar–CH), 128.7 (Ar–
C), 127.8 (Ar–C), 126.5 (Ar–CH), 126.3 (Ar–CH), 123.7 (Ar–C), 123.0
References and notes
1. Hamilton, J. G. Rev. Mod. Phys. 1948, 20, 718–728.
2. Bulman, R. A. Coord. Chem. Rev. 1980, 31, 221–250.
3. Galle, P. Toxiques Nucléaires; Masson: Paris, 1997. pp 185-205.
4. Sawicki, M.; Siaugue, J.-M.; Jacopin, C.; Moulin, C.; Bailly, T.; Burgada, R.;
Meunier, S.; Baret, P.; Pierre, J.-L.; Taran, F. Chem. Eur. J. 2005, 11, 3689–3697.
5. Bailly, T.; Burgada, R.; Prange, T.; Lecouvey, M. Tetrahedron Lett. 2002, 44, 189–
192.
6. Burgada, R.; Bailly, T.; Prange, T.; Lecouvey, M. Tetrahedron Lett. 2007, 48, 2315–
2319.
7. Sawicki, M.; Lecercle, D.; Grillon, G.; Le Gall, B.; Serandour, A.-L.; Poncy, J.-L.;
Bailly, T.; Burgada, R.; Lecouvey, M.; Challeix, V.; Leydier, A.; Pellet-Rostaing, S.;
Ansoborlo, E.; Taran, F. Eur. J. Med. Chem. 2008, 43, 2768–2777.
8. Ubios, A. M.; Braun, E. M.; Cabrini, R. L. Health Phys. 1994, 66, 540–544.
9. Ubios, A. M.; Braun, E. M.; Cabrini, R. L. Health Phys. 1998, 75, 610–613.
10. Martinez, A. B.; Cabrini, R. L.; Ubios, A. M. Health Phys. 2000, 78, 668–671.
11. Fukuda, S.; Iida, H.; Ikeda, M.; Yan, X.; Xie, Y. Health Phys. 2005, 89, 81–88.
12. Durbin, P. W.; Kullgren, B.; Ebbe, S. N.; Xu, J.; Raymond, K. N. Health Phys. 2000,
78, 511–521.
13. Sylwester, E. R.; Allen, P. G.; Dharmawardana, U. R.; Sutton, M. Inorg. Chem.
2001, 40, 2835–2841.
14. Domingo, J. L.; Ortega, A.; Llobet, J. M.; Corbella, J. Fundam. Appl. Toxicol. 1990,
14, 88–95.
15. Ramounet-Le Gall, B.; Grillon, G.; Rateau, G.; Burgada, R.; Bailly, T.; Fritsch, P.
Radiat. Prot. Dosim. 2003, 105, 535–538.
16. Gorden, A. E. V.; Xu, J.; Raymond, K. N.; Durbin, P. Chem. Rev. 2003, 103, 4207–
4282.
17. Xu, J.; Raymond, K. N. Inorg. Chem. 1999, 38, 308–315.
18. Leydier, A.; Lecercle, D.; Pellet-Rostaing, S.; Favre-Reguillon, A.; Taran, F.;
Lemaire, M. Tetrahedron 2008, 64, 6662–6669.
19. Leydier, A.; Lecercle, D.; Pellet-Rostaing, S.; Favre-Reguillon, A.; Taran, F.;
Lemaire, M. Tetrahedron 2008, 64, 11319–11324.
(Ar–CH), 119.9 (Ar–C), 118.3 (Ar–CH), 114.3 (Ar–CH), 112.6 (Ar–
+
CH), 69.2 (CH2), 39.0 (CH2) HRMS (ESI): calcd for C38H32N2NaO20S4
987.0323; found: 987.0319.
:
Compound 11: 0.9 mL of oxalyl chloride (10 mmol) was added
dropwise to a solution of 1.79 g of 5 (7.3 mmol) in CH2Cl2
(15 mL). After adding a drop of DMF, the mixture was stirred until
the end of HCl release. After evaporation of solvents and residual
oxalyl chloride, the residue was dissolved in dry CH2Cl2 and added
dropwise to a solution of 6 (1.3 g, 3.5 mmol) and 1.2 mL of trieth-
ylamine (8.5 mmol) in 30 mL of dry CH2Cl2. After 18 h under stir-
ring, the mixture was washed with water (2 ꢀ 50 mL), brine
(50 mL), then dried over MgSO4 and evaporated to dryness. The
residue was purified by silica gel column chromatography (EtOAc)
to give 10 (1.68 g, 58%) as a white powder. 1H NMR (CDCl3,
300 MHz, 25 °C) d (ppm): 7.75 (m, 4H, Ar–H), 7.16–7.33 (m, 16H,
Ar–H), 7.01–7.10 (m, 4H, Ar–H), 6.70 (dd, J = 1.5 Hz, 9.3 Hz, 2H,
Ar–H), 6.13 (t, J = 5.5 Hz, 2H, Ar–H), 5.84, (dd, J = 1.5 Hz, 6.78 Hz,
2H, Ar–H), 5.13 (d, J = 8.5 Hz, 1H, O–CH2–Ar), 5.08 (d, J = 8.5 Hz,
1H, O–CH2–Ar) 3.86 (m, 4H, O–CH2–CH2–NH), 3.22 (m, 4H, O–
CH2–CH2–NH). 13C NMR (CDCl3, 75 MHz, 25 °C) d (ppm): 160.4
(Ar–C), 158.8 (Ar–C), 153.4 (Ar–C), 142.8 (Ar–C), 138.4 (Ar–CH),
20. Brunel, J. M. Chem. Rev. 2005, 105, 857–897.
21. Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155–3211.
22. Wang, Y.-W.; Liu, W.-S.; Tang, N.; Tan, M.-Y.; Yu, K.-B. J. Coord. Chem. 2005, 58,
701–711.
23. Wang, Y.-W.; Liu, W.-S.; Tang, N.; Tan, M.-Y.; Yu, K.-B. J. Mol. Struct. 2003, 660,
41–47.