Tetrahedron Letters
4
(c) A. Prieto, O. Baudoin, D. Bouyssi, N. Monteiro, Chem. Commun. 52 (2016) 869‒881;
(d) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 115 (2015) 650‒682;
(e) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 46 (2007) 754‒757.
[6] (a) Y. Zeng, J. Hu, Synthesis 48 (2016) 2137‒2150;
(b) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 115 (2015) 683‒730;
(c) R.P. Singh, J.M. Shreeve, Tetrahedron 56 (2000) 7613‒7632;
(d) L. Chu, F.-L. Qing, Acc. Chem. Res. 47 (2014) 1513‒1522;
(e) G.K.S. Prakash, M. Mandal, J. Fluorine Chem. 112 (2001) 123‒131;
(f) G. K.S. Prakash, P.V. Jog, P.T. D. Batamack, G.A. Olah, Science 338 (2012) 1324‒1327.
[7] (a) A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950‒8958;
(b) W. Zeng, F.X. Chen, Chin. J. Appl. Chem. 31 (2014) 627‒641;
(c) B. Zhang, C. Mück-Lichtenfeld, C.G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 52 (2013) 10792‒10795;
(d) Z. Li, Z. Cui, Z.-Q. Liu, Org. Lett. 15 (2013) 406‒409;
(e) Y. Ye, S.A. Künzi, M.S. Sanford, Org. Lett. 14 (2012) 4979‒4981.
[8] (a) Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034–9037;
(b) Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 51 (2012) 9567‒9571;
(c) P.V. Pham, D.A. Nagib, D.W.C. MacMillan, Angew. Chem. Int. Ed. 50 (2011) 6119‒6122;
(d) S. Mizuta, S. Verhoog, K.M. Engle, T. Khotavivattana, M. O’Duill, K. Wheelhouse, G. Rassias, M. Médebielle, V. Gouverneur, J. Am. Chem. Soc.
135 (2013) 2505‒2508;
(e) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu, Chem. Eur. J. 19 (2013) 14039‒14042;
(f) S.P. Pitre, C.D. McTiernan, H. Ismaili, J.C. Scaiano, ACS Catal. 4 (2014) 2530‒2535.
[9] (a) D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176;
(b) N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115 (2015) 10307‒10377;
(c) T. Bach, J.P. Hehn, Angew. Chem. Int. Ed. 50 (2011) 1000‒1045;
(d) V. Balzani, A. Credi, M. Venturi, ChemSusChem 1 (2008) 26‒58;
(e) G. Ciamician, Science 36 (1912) 385‒394.
[10] (a) D.A. Nagib, D.W.C. MacMillan, Nature 480 (2011) 224‒228;
(b) D.A. Nagib, M.E. Scott, D.W.C. MacMillan, J. Am. Chem. Soc. 131 (2009) 10875‒10877;
(c) (d) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu, Chem. Eur. J. 19 (2013) 14039‒14042;
(e) N. Iqbal, J. Jung, S. Park, E.J. Cho, Angew. Chem. Int. Ed. 53 (2014) 539‒542;
(f) R. Tomita, Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 53 (2014) 7144‒7148;
(g) Y. Yasu, T. Koike, M. Akita, Chem. Commun. 49 (2013) 2037‒2039;
(h) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 11 (2013) 2387-2403.
[11] D.A. Nicewicz, D.W.C. MacMillan, Science 322 (2008) 77‒80.
[12] (a) M.H. Shaw, J. Twilton, D.W.C. MacMillan, J. Org. Chem. 81 (2016) 6898‒6926;
(b) H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 515 (2014) 100‒103;
(c) A. Noble, S.J. McCarver, D.W.C. MacMillan, J. Am. Chem. Soc. 137 (2015) 624‒627;
(d) J.D. Cuthbertson, D.W.C. MacMillan, Nature 519 (2015) 74‒77;
(e) T. Koike, M. Akita, Inorg. Chem. Front. 1 (2014) 562‒576;
(f) K. Kalyanasundaram, Coord. Chem. Rev. 46 (1982) 159‒244;
(g) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322‒5363;
(h) J.W. Tucker, C.R.J. Stephenson, J. Org. Chem. 77 (2012) 1617–1622.
[13] (a) J.C. Theriot, C.-H. Lim, H. Yang, M.D. Ryan, C.B. Musgrave, G.M. Miyake, Science 352 (2016) 1082‒1086;
(b) M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. Int. Ed. 50 (2011) 951‒954;
(c) D. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 42 (2013) 97‒113;
(d) D.A. Nicewicz, T.M. Nguyen, ACS Catal. 4 (2014) 355‒360;
(e) D.P. Hari, B. König, Chem. Commun. 50 (2014) 6688‒6699;
(f) S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 12 (2014) 6059-6071.
[14] (a) G.G. Pawar, F. Robert, E. Grau, H. Cramail, Y. Landais, Chem. Commun. 54 (2018) 9337‒9340;
(b) D. Sun, K. Yin, R. Zhang, Chem. Commun. 54 (2018) 1335‒1338;
(c) M.K. Bogdos, E. Pinard, J.A. Murphy, Beilstein J. Org. Chem. 14 (2018) 2035‒2064;
(d) X.-Q. Dai, W.-X. Xu, Y.-L. Wen, X.-H. Liu, J.-Q. Weng, Tetrahedron Lett. 59 (2018) 2945‒2949;
(e) Y. Zhang, D. Riemer, W. Schilling, J. Kollmann, S. Das, ACS Catal. 8 (2018) 6659‒6664;
(f) J. Zhu, W.-C. Cui, S. Wang, Z.-J. Yao, Org. Lett. 20 (2018) 3174‒3178;
(g) L. Ren, H. Cong, Org. Lett. 20 (2018) 3225‒3228.
[15] L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv. Synth. Catal. 355 (2013) 2203‒2207.
[16] (a) T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyama, A. Nakazato, Bioorg. Med. Chem. 12 (2004) 423‒438;
(b) L. Almirante, L. Polo, A. Mugnaini, E. Provinciali, P. Rugarli, A. Biancotti, A. Gamba, W. Murmann, J. Med. Chem. 8 (1965) 305‒312;
(c) D.J. Sanger, Behav. Pharmacol. 6 (1995) 116‒126;
(d) T.S. Harrison, G.M. Keating, CNS Drugs 19 (2005) 65‒89;
(e) H. Mori, M. Tanaka, R. Kayasuga, T. Masuda, Y. Ochi, H. Yamada, K. Kishikawa, M. Ito, T. Nakamura, Bone 43 (2008) 840‒848.
[17] (a) N. Chernyak, V. Gevorgyan, Angew. Chem. Int. Ed. 49 (2010) 2743 ‒2746;
(b) S.M. Roopan, S.M. Patil, J. Palaniraja, Res. Chem. Intermed. 42 (2016) 2749‒2790;
(c) A.K. Bagdi, S. Santra, K. Monira, A. Hajra, Chem. Commun. 51 (2015) 1555‒1575;
(d) K. Pericherla, P. Kaswan, K. Pandey, A. Kumar, Synthesis 47 (2015) 887‒912;
(e) C. Enguehard-Gueiffier, A. Gueiffier, Mini-Rev. Med. Chem. 7 (2007) 888‒899.
[18] K. Monir, A.K. Bagdi, M. Ghosh, A. Hajra, J. Org. Chem. 80 (2015) 1332‒1337.
[19] Y. Wu, H.-R. Zhang, R.-X. Jin, Q. Lan, X.-S. Wang, Adv. Synth. Catal. 358 (2016) 3528‒3533.
[20] Q. Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun. 52 (2016) 2493‒2496.