S. V. Karthikeyan et al. / Bioorg. Med. Chem. Lett. 20 (2010) 350–353
353
623.3
(MIC: 50.8
7k–9k, 8h, 9a, 9c, 9h–j and 9m) inhibited MTB with a MIC of less
than 5.7 M and were more active than the ethambutol (MIC:
7.6
l
M and were more potent than the standard pyrazinamide
Acknowledgments
l
M). Nineteen compounds (7b–9b, 7e–9e, 7f–9f,
S.P. thanks the Department of Science and Technology, New
Delhi, for funding a major research project (No. SR/S1/OC-70/
2006) and for funds under (i) IRHPA program for funds for the pur-
chase of a high resolution NMR spectrometer and (ii) FIST program
and the University Grants Commission, New Delhi, for (i) funds un-
der the DRS and ASIST programs and (ii) for funding for a major re-
search project [F. No. 36-155/ 2008 (SR)]. S.V.K. and V.P.A.R. thank
the Council of Scientific and Industrial Research, New Delhi for the
award of a Senior Research Fellowship.
l
l
M). Among thirty eight compounds screened against MTB,
spiro[5.300]-500-nitrooxindole-spiro-[6.30]-10-methyl-50-(2,4-dichlor-
ophenylmethyli-dene)-tetrahydro-40(1H)-pyridinone-7-(2,4-dichl-
orophenyl)tetrahydro-1H-pyrrolo-[1,2-c][1,3]thiazole (9k) was
found to be the most active in vitro with MIC of 0.6 lM against
MTB, being 13 and 85 times more potent than ethambutol and
pyrazinamide, respectively. All the compounds, however, showed
lower activity than rifampicin and isoniazid (MIC: 0.1
0.4 M, respectively).
Subsequently, six compounds (8e, 8k, 9e, 9f, 9h and 9k) that
lM and
l
Supplementary data
displayed maximum activity against MTB were evaluated against
MDR-TB. All these inhibited MDR-TB with MIC ranging from 0.6
Supplementary data associated with this article can be found, in
to 2.8
available first line anti-TB drugs, viz. rifampicin (MIC: 3.8
isoniazid (MIC: 11.4 M), ethambutol (MIC: 61.2 M) and pyrazin-
amide (MIC: 406.1
M). The compound, spiro[5.300]-500-nitrooxin-
lM and were found to be more active than all the currently
l
M),
References and notes
l
l
1. Lenaerts, A. J.; DeGroote, M. A.; Orme, I. M. Trends Microbiol. 2008, 16, 48.
2. Tomioka, H. Curr. Pharm. Des. 2006, 12, 4047.
3. Williams, K. J.; Duncan, K. Curr. Mol. Med. 2007, 7, 297.
4. Check, E. Nat. Med. 2007, 13, 266.
5. Salomon, J. A.; Lloyd-Smith, J. O.; Getz, W. M.; Resch, S.; Sanchez, M. S.; Porco, T.
C.; Borgdorff, M. W. PLoS Med. 2006, 3, e273.
l
dole-spiro-[6.30]-10-methyl-50-(2,4-dichlorophenyl-methylidene)-
tetrahydro-40(1H)-pyridinone-7-(2,4-dichlorophenyl)tetrahydro-
1H-pyrrolo-[1,2-c][1,3]-thiazole (9k) again emerged to be the most
active one in vitro with a MIC of 0.6 lM against MDR-TB, as in the
6. Freire, M. C. World Hosp. Health Serv. 2006, 42, 34.
7. Spigelman, M.; Gillespie, S. Lancet 2006, 367, 945.
case of MTB, being more potent than the first line anti-TB drugs,
rifampicin (6 times), isoniazid (19 times), ethambutol (102 times)
and pyrazinamide (677 times).
With respect to structure-MTB activity relationship, the
results demonstrated that the antimycobacterial activity of the
spiro-pyrrolothiazoles diminish in the order: 9 > 8 > 7 as evident
from the fact that ten compounds in series 9 (9a–c, 9e, 9f, 9h–k
and 9m), five in series 8 (8b, 8e, 8f, 8h and 8k), and four in ser-
ies 7 (7b, 7e, 7f and 7k) were more active against MTB than eth-
ambutol (Table 2). Among the compounds from the series 7–9,
8. (a) Terrini, M.; Villani, P. Exp. Opin. Ther. Pat. 2001, 11, 261; (b) Crick, D. C.;
Brennan, P. J. Curr. Opin. Anti-Infect. Invest. Drugs 2000, 2, 154.
9. Bass, J. B., Jr.; Farer, L. S.; Hopewell, P. C.; O’Brien, R.; Jacobs, R. F.; Ruben, F.;
Snider, D. E., Jr.; Thornton, G. Am. J. Respir. Crit. Care Med. 1994, 149, 1359.
10. Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M. C. J. Am. Med. Assoc.
1999, 282, 677.
11. Duncan, K. Tuberculosis 2003, 83, 201.
12. (a) Sonia, A.; Sar, V.; Blunt, J. W.; Munro, M. H. G. Org. Lett. 2006, 8, 2059; (b)
James, D. M.; Kunze, H. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1137; (c)
Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.;
Mikami, Y. Tetrahedron 1991, 47, 6617; (d) Longeon, A.; Guyot, M.; Vacelet, J.
Experentia 1990, 46, 548.
13. (a) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105; (b) Waldmann, H.
Synlett 1995, 133; (c) Fisera, L.; Sauter, F.; Frolich, J.; Feng, Y.; Ertl, P.; Mereiter,
K. Monatsh. Chem. 1994, 125, 553; (d) Tsuge, O.; Kanemasa, S. Adv. Heterocycl.
Chem. 1989, 45, 231; (e) Vedejs, E. Adv. Cycloaddit. 1988, 1, 33; (f) Vedejs, E.;
West, F. G. Chem. Rev. 1986, 86, 941; (g) Padwa, A. In 1,3-Dipolar Cycloaddition
Chemistry; Wiley-Interscience: New York, 1984; Vol. 2. p 277.
compounds 7f and 7k (MIC: 4.7
lM), 8k (MIC: 1.2 lM), and 9k
(MIC: 0.6 M) were found to be the most active ones. These re-
l
sults demonstrate that the spiro-pyrrolothiazoles with chlorine
at 500-position of the isatin sub-structure is more active than
the unsubstituted isatin nucleus, while the presence of a nitro
group at 500-position conferred maximum activity. Similarly, the
presence of two chlorines in the phenyl rings also enhances
the activity.
14. Lalezari, I.; Schwartz, E. L. J. Med. Chem. 1988, 31, 1427.
15. Aicher, T. D.; Balkan, B.; Bell, P. A.; Brand, L. J.; Cheon, S. H.; Deems, R. O.; Fell, J.
B.; Fillers, W. S.; Fraser, J. D.; Gao, J.; Knorr, D. C.; Kahle, G. G.; Leone, C. L.;
Nadelson, J.; Simpson, R.; Smith, H. C. J. Med. Chem. 1998, 41, 4556.
16. Tverdokhlebov, A. V.; Resnyanska, E. V.; Tolmachev, A. A.; Andrushko, A. P.
Synthesis 2003, 2632.
17. (a) Maki, Y.; Sako, M.; Kurahashi, N.; Hirota, K. J. Chem. Soc., Chem. Commun. 1988,
110; (b) Boyd, D. B.; Elzey, T. K.; Hatfield, L. D.; Kinnick, M. D.; Morin, J. M., Jr.
Tetrahedron Lett. 1986, 27, 3453; (c) Jephcote, V. J.; John, D. I.; Williams, D. J. J. Chem.
Soc., Perkin Trans. 1 1986, 2195; (d) Baldwin, J. E.; Lowe, C.; Schofield, C. J.; Lee, E.
TetrahedronLett. 1986, 27, 3461;(e)Baldwin, J. E.;Lee, E.Tetrahedron1986, 42, 6551.
18. Kraus, G. A.; Nagy, J. O. Tetrahedron 1985, 41, 3537.
It is pertinent to note that spiro-pyrrolothiazoles of the present
study having unsubstituted isatin sub-structure and aryl rings with
chlorine at the para position (7b, 5.4
ortho and para positions (7k, 4.7 M) showed better activity than
the previously reported structurally analogous spiro-pyrrolizines22
with p-Cl (3b, 22.73 M) and o,p-Cl2 (3j, 19.94 M) substituents,
lM) and two chlorines at
l
l
l
19. Monn, J. A.; Valli, M. J. J. Org. Chem. 1994, 59, 2773.
20. Esslinger, C. S.; Titus, J. L.; Koch, H. P.; Bridges, R. J.; Chamberlin, A. R. Bioorg.
Med. Chem. 2002, 10, 3509.
which differ from the spiro-pyrrolothiazoles only by the absence
of a sulfur atom. This clearly shows that the sulfur atom of the
spiro-pyrrolothiazoles enhances the activity by about ꢀ4 times.
21. (a) Indumathi, S.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. Eur. J. Med.
Chem. 2009. doi.org/10.1016/j.ejmech.2009.09.001; (b) Kumar, R.S.; Perumal, S.;
Shetty, K.A.; Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2009. doi.org/10.1016/
j.ejmech.2009.09.034; (c) Kumar, R.S.; Rajesh, S.M.; Perumal, S.; Banerjee, D.;
Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2009. doi.org/10.1016/j.ejmech.
2009.09.044; (d) Balamurugan, K.; Perumal, S.; Reddy, A. S. K.; Yogeeswari, P.;
Sriram, D. Tetrahedron Lett. 2009, 50, 6191; (e) Karthikeyan, S. V.; Perumal, S.;
Shetty, K. A.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2009, 19, 3006; (f)
Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Eur. J. Med.
Chem. 2009, 44, 3821; (g) Kumar, R. R.; Perumal, S.; Manju, S. C.; Bhatt, P.;
Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2009, 19, 3461.
22. Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. J. Med.
Chem. 2008, 51, 5731.
23. Crystallographic data (excluding structure factors) for spiro-pyrrolothiazoles
7b and 7c in this letter have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication numbers CCDC
697774 and 745157. Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223-
336033 or e-mail: deposit@ccdc.cam.ac.uk].
Similarly, spiro-pyrrolothiazoles,
8 and 9, respectively, with
chloro- and nitro-substitutions in the isatin ring led to further
enhancement of the activity relative to the compounds with
unsubstituted isatin ring of spiro-pyrrolizines 3, bearing similar
substituents in the aryl rings.
In conclusion, the 1,3-dipolar cycloaddition of azomethine ylide
generated in situ from substituted isatin and 1,3-thiazolane-4-car-
boxylic acid to 1-methyl-3,5-bis[(E)-arylmethyli-dene]tetrahydro-
4(1H)-pyridinones afforded thirty eight spiro-pyrrolothiazoles
7–9 in near quantitative yields. These spiroheterocycles displayed
good in vitro antimycobacterial activity against MTB and MDR-
TB. The antimycobacterial potency of these spiro heterocycles
renders them valid leads for synthesizing new heterocycles
endowed with enhanced activity.