4396
Y. Sun et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4393–4396
mechanism, that is, the T2 value of 2-CongII reduced from 0.34 sec
to 0.14 sec upon the binding of ASF and recovered to 0.62 sec right
after the subsequent addition of lactose.
Supplementary data
Supplementary data associated with this article can be found, in
Moving on from 19F NMR experiments, more visually apprehen-
sible and clinically applicable MRI studies were carried out on gly-
coprotein detections with the employment of our 19F-based lectin
biosensor. For each set of experiment, MR images of proton (1H,
Fig. 3a, top), 19F attributed to lectin biosensor (Fig. 3b, bottom)
and 19F contributed by internal standard TFA (Fig. 3a, middle) were
collected from the samples containing 2-CongII. Prior to addition of
glycoproteins, all 1H and 19F images of samples represented them-
selves as well-recognizable images (samples (i) and (iv)). After
adding ASF, the image attributed to 19F biosensor diminished, leav-
ing only background signal level to be revealed (Fig. 3a, bottom,
sample (ii)). Such phenomenon is due to significantly shortened
T2 value as proposed previously and it well agreed with the corre-
sponding NMR results. The intensity was resumed later in the pres-
ence of excess amount of lactose (Fig. 3a, bottom, sample (iii)). On
the other hand, mixing of 19F biosensor and RiboB caused no much
impact on the image intensity (Fig. 3b, samples (v) and (vi)), a pre-
dictable outcome judging from NMR results. Therefore, these re-
sults clearly indicated that our turn-off type 19F-biosensor is a
powerful tool for visualizing glycoprotein specifically.
References and notes
1. (a) Rothbacher, U.; Moats, R.; Jacobs, R. E.; Fraser, S. E.; Meade, T. J. Nat.
Biotechnol. 2000, 18, 321–325; (b) Sosnonik, D. E.; Weissleder, R. Curr. Opin.
Biotechnol. 2007, 18, 4–10; (c) Kiessling, F.; Morgentstern, B.; Zhang, C. Curr.
Med. Chem. 2007, 14, 77–91.
2. (a) Danielson, M. A.; Falke, J. J. Ann. Rev. Biophys.Biomol.Struct. 1996, 25, 163–
195; (b) Yu, J.; Kodibagkar, V. D.; Cui, W.; Mason, R. P. Curr. Med. Chem. 2005,
12, 819–848.
3. (a) Yu, J.; Otten, P.; Ma, Z.; Cui, W.; Liu, L.; Mason, R. P. Bioconjugate Chem. 2004,
15, 1334–1341; (b) Higuchi, M.; Iwata, N.; Matsuba, Y.; Sato, K.; Sasamoto, K.;
Saido, T. C. Nat. Neurosci. 2005, 8, 527–533; (c) Mizukami, S.; Takikawa, R.;
Sugihara, F.; Hori, Y.; Tochio, H.; Wälchli, M.; Shirakawa, M.; Kikuchi, K. J. Am.
Chem. Soc. 2008, 130, 794–795; (d) Takaoka, Y.; Sakamoto, T.; Tsukiji, S.;
Narazaki, M.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Hamachi, I. Nat. Chem.
2009, 1, 557–561.
4. (a) Jackson, J. C.; Hammill, J. T.; Mehl, R. A. J. Am. Chem. Soc. 2007, 129, 1160–
1166; (b) Hammill, J. T.; Miyake-Stoner, S.; Hazen, J. L.; Jackson, J. C.; Mehl, R. A.
Nat. Protoc. 2007, 2, 2601–2607.
5. (a) Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Nat. Chem.
Biol. 2009, 5, 341–343; (b) Takaoka, Y.; Sun, Y.; Tsukiji, S.; Hamachi, I. Chem. Sci.
2011, 2, 511–520.
6. (a) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001,
291, 2370–2376; (b) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357–
2364; (c) Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855–867.
7. Grage, S. L.; Dürr, U. H. N.; Afonin, S.; Mikhailiuk, P. K.; Komarov, I. V. Ulrich A. S.
J. Magn. Reson. 2008, 191, 16–23.
8. Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am.
Chem. Soc. 2008, 130, 245–251.
9. (a) Hamachi, I.; Nagase, T.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 12065–
12066; (b) Nakata, E.; Koshi, Y.; Koga, E.; Katayama, Y.; Hamachi, I. J. Am. Chem.
Soc. 2005, 127, 13253–13261; (c) Ishii, M.; Matsumura, S.; Toshima, K. Angew.
Chem. Int. Ed. 2007, 46, 8396–8399.
10. (a) Kamiya, H.; Muramoto, K.; Goto, R. Dev. Comp. Immunol. 1988, 12, 309–318;
(b) Mitsuyama, C. S.; Ito, Y.; Konno, A.; Miwa, Y.; Ogawa, T.; Muramoto, K.;
Shirai, T. J. Mol. Biol. 2005, 347, 385–397.
11. Muramoto, K.; Kagawa, D.; Sato, T.; Ogawa, T.; Nishida, Y.; Kamiya, H. Comp.
Biochem. Phys. Part B 1999, 123, 33–45.
12. Yamashita, K.; Tachibana, Y.; Kobata, A. J. Biol. Chem. 1978, 253, 3862–3869.
13. Berman, E.; Walters, D. E.; Allerhand, A. J. Biol. Chem. 1981, 256, 3853–3857.
In conclusion, we succeeded to develop the 19F-based lectin bio-
sensor for specific detection of glycoproteins by using the saccha-
ride-tethered DMAP catalyst and 19F-acyl donors. Constructed
biosensor could distinguish glycoproteins from small molecule
saccharides for the peak broadening in 19F NMR directly relates
to the Mr of each glycoconjugate. Furthermore, this distinct signal
on/off switching was applied to visualize the lectin-glycoprotein
interaction in a 19F MRI phantom. We envision further applications
of such chemically modified 19F-biosensor for detection of various
protein–protein interaction pairs.
Acknowledgments
Y.S. and Y.T. acknowledge JSPS Research Fellowshios for Young
Scientists. This work was partly supported by the CK Integrated
Medical Bioimaging Project (MEXT) and CREST (Japan Science
and Technology Agency).