that heteroatom-substituted silanes may not tolerate but
which can nonetheless be activated toward cross-coupling
in a similar manner, are a particularly important subclass.8k,9
Regio- and stereoselective access to functionalized vinylsi-
lanes has primarily been achieved via the transition metal-
catalyzed hydrosilylation of alkynes10 and from vinyl halides
via metalÀhalogen exchange/carbanion silylation.11 As these
vinylsilane precursors are themselves often prepared from
aldehydes, a direct synthesis of functionalized vinylsilanes
from aldehydes would represent a valuable means to bypass
an additional functional group manipulation. To our knowl-
edge, the only direct preparation of functionalized vinylsi-
lanes from aldehydes has been reported by Yoshida and co-
workers and involves the formation of 2-pyridyldimethylsilyl
alkenes through the Peterson olefination of a bis-pyridylsilyl
carbanion.12 While this route affords (E)-vinylsilanes in good
yields and excellent stereoselectivity, the reaction is necessa-
rily conducted under strongly basic conditions, which may
limit functional group tolerance. In contrast, the preparation
of nonfunctionalized vinylsilanes (i.e., trialkylvinylsilanes)
from aldehydes has much greater precedent. In particu-
lar, the Takai silylolefination of aldehydes with chro-
mium(II) chloride and Me3SiCHBr2, which affords
Scheme 1. Preparation of Dihalomethyl Benzyldimethylsilane
Reagents 1 and 2
(E)-vinylsilanes with high stereoselectivity,13 is well-
recognized as a valuable and reliable tool for the stereo-
selective synthesis of alkenyl trimethylsilanes.
In the course of investigations into the total synthesis of
polyene-containing natural products, we required a mild and
selective method for the synthesis of a vinylsilane suitable for
Hiyama coupling and recognized that application of a
Takai-type olefination using a functional dihalomethylsi-
lane reagent might offer a solution to this problem. While
the Takai olefination has been extended to the synthesis of
vinylboronic esters using pinBCHBr2,13c,14 an analogous
“functionalized” silylation has not yet been realized but
would certainly represent a powerful means to access such
useful vinylsilanes. We report herein the development of this
process and its application to a wide range of aldehydes.
Our investigations began with the selection of the benzyl-
dimethylsilyl group as a representative “safety-catch” silanol,
which has been shown to possess stability toward acidic and
basic reaction conditions but can be activated by a fluoride
source to participate in cross-coupling8k,9aÀ9f and oxida-
tion reactions.6e,9c,15 The dihalomethyl benzyldimethyl-
silane reagents 1 and 2 (Scheme 1) were conveniently
prepared on a multigram scale by treating the correspond-
ing dihalomethanes with LDA, followed by trapping of
the lithium carbanion with benzylchlorodimethylsilane
(Scheme 1).16 Dibromide 1 could also be prepared from
the Grignard reagent formed in situ from treatment
of bromoform with iso-propylmagnesium chloride.17
Although 1 can be stored indefinitely at room tempera-
ture without decomposition, diiodide 2 gradually turns
(9) Benzyldimethylsilanes: (a) Trost, B. M.; Machacek, M. R.; Ball,
Z. T. Org. Lett. 2003, 5, 1895–1898. (b) Trost, B. M.; Frederiksen, M. U.;
Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am.
Chem. Soc. 2005, 127, 3666–3667. (c) Denmark, S. E.; Fujimori, S. J.
Am. Chem. Soc. 2005, 127, 8971–8973. (d) Denmark, S. E.; Liu, J. H. C.
J. Am. Chem. Soc. 2007, 129, 3737–3744. (e) Zhang, Y.; Panek, J. S. Org.
Lett. 2007, 9, 3141–3143. (f) Morrill, C.; Mani, N. S. Org. Lett. 2007, 9,
1505–1508. Siletanes: (g) Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc.
1999, 121, 5821–5822. (h) Denmark, S. E.; Wehrli, D.; Choi, J. Y. Org.
Lett. 2000, 2, 2491–2494. 2-Pyridylsilanes: (i) Itami, K.; Nokami, T.;
Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J.-i. J. Am. Chem. Soc.
2001, 123, 11577–11585. Intramolecular activation of vinylsilanes: (j)
Shindo, M.; Matsumoto, K.; Shishido, K. Synlett 2005, 176–178. (k)
Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am.
Chem. Soc. 2005, 127, 6952–6953.
(10) (E)-selective hydrosilylation: (a) Denmark, S. E.; Wang, Z. G.
Org. Lett. 2001, 3, 1073–1076. (b) Takahashi, T.; Bao, F. Y.; Gao, G. H.;
Ogasawara, M. Org. Lett. 2003, 5, 3479–3481. (c) Aneetha, H.; Wu, W.;
Verkade, J. G. Organometallics 2005, 24, 2590–2596. (d) Marko, I. E.;
Berthon-Gelloz, G.; Schumers, J. M.; De Bo, G. J. Org. Chem. 2008, 73,
4190–4197. See also refs, 6b, 6c, 8g, and 8h. (Z)-selective: (e) Na, Y. G.;
Chang, S. B. Org. Lett. 2000, 2, 1887–1889. (f) Maifeld, S. V.; Tran,
M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105–108. R-selective: (g)
Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644–17655. (h)
Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K. Org. Lett. 2002, 4,
2825–2827. Tuneable selectivity: (i) Faller, J. W.; D’Alliessi, D. G.
Organometallics 2002, 21, 1743–1746. (j) Katayama, H.; Taniguchi, K.;
Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, F. J. Organomet.
Chem. 2002, 645, 192–200. (k) Mori, A.; Takahisa, E.; Yamamura, Y.;
Kato, T.; Mudalige, A. P.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.;
Hiyama, T. Organometallics 2004, 23, 1755–1765. For a recent review,
see: (l) Trost, B. M.; Ball, Z. T. Synthesis 2005, 853–887.
(11) For other classical routes to vinylsilanes, see: (a) Chan, T. H.;
Fleming, I. Synthesis 1979, 761–786. For other transition metal-
catalyzed routes to vinylsilanes, see: (b) Yamashita, H.; Roan, B. L.;
Tanaka, M. Chem. Lett. 1990, 2175–2176. (c) Pietraszuk, C.; Fischer, H.;
Rogalski, S.; Marciniec, B. J. Organomet. Chem. 2005, 690, 5912–5921.
For the silylcupration of alkynes, see: (d) Loh, T. P.; Wang, P.; Yeo,
X. L. J. Am. Chem. Soc. 2011, 133, 1254–1256. (e) Barbero, A.; Pulido,
F. J. Acc. Chem. Res. 2004, 37, 817–825.
(12) (a) Itami, K.; Nokami, T.; Yoshida, J. Org. Lett. 2000, 2, 1299–
1302. (b) Itami, K.; Nokami, T.; Yoshida, J. Tetrahedron 2001, 57, 5045–
5054. (c) Itami, K.; Mitsudo, K.; Nokami, T.; Kamei, T.; Koike, T.;
Yoshida, J. J. Organomet. Chem. 2002, 653, 105–113.
(14) (a) Takai, K.; Shinomiya, N.; Kaihara, H.; Yoshida, N.; Moriwake,
T.; Utimoto, K. Synlett 1995, 963–964. For recent applications in synthesis,
see: (b) Onodera, Y.; Suzuki, T.; Kobayashi, S. Org. Lett. 2011, 13, 50–53. (c)
Inoue, A.; Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron Lett.
2010,51, 3966–3968. (d) Kanematsu, M.; Shindo, M.; Yoshida, M.; Shishido,
K. Synthesis 2009, 2893–2904. (e) Cheung, L. L.; Marumoto, S.; Anderson,
C. D.; Rychnovsky, S. D. Org. Lett. 2008, 10, 3101–3104.
(15) Trost, B. M.; Ball, Z. T.; Laemmerhold, K. M. J. Am. Chem. Soc.
2005, 127, 10028–10038.
(16) (a) Inoue, A.; Kondo, J.; Shinokubo, H.; Oshima, K. Chem.;
Eur. J. 2002, 8, 1730–1740. (b) Charette, A. B.; Bull, J. A. J. Org. Chem.
2008, 73, 8097–8100.
(17) Seyferth, D.; Lambert, R. L.; Hanson, E. M. J. Organomet.
Chem. 1970, 24, 647–661.
(13) (a) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahe-
dron Lett. 1987, 28, 1443–1446. (b) Takai, K.; Hikasa, S.; Ichiguchi, T.;
Sumino, N. Synlett 1999, 1769–1771. (c) Takai, K.; Kunisada, Y.;
Tachibana, Y.; Yamaji, N.; Nakatani, E. Bull. Chem. Soc. Jpn. 2004,
77, 1581–1586.
Org. Lett., Vol. 13, No. 18, 2011
4807