Inorganic Chemistry
ARTICLE
oximato bridges between Ni(1) with Ni(3)/Ni(3a) and Ni(6)
with Ni(4)/Ni(4a) are very similar, and thus, to minimize the
number of coupling constants in the fitting process, we have
assumed greater symmetry than that experimentally found in the
structure. Simulation was performed by means of the CLUMAG
program27 applying the three-J Hamiltonian
calculated coupling constants provides experimental examples of
the predicted response of the NiꢀOꢀNꢀNi pathway with large
torsion angles.
’ ASSOCIATED CONTENT
S
Supporting Information. Crystallographic data files
b
H ¼ ꢀJ1ðS1 S3 þ S1 S3a þ S6 S4 þ S6 S4aÞ
3
3
3
3
(CIF format) for complexes 2ꢀ4, crystal data (Table S1), and
plot of compound 1 (Figure S1). This material is available free of
ꢀ J2ðS3 S3a þ S4 S4aÞ ꢀ J3ðS3 S4 þ S3 S4a
3
3
3
3
þ S3a S4 þ S3a S4aÞ
3
3
Best fit parameters were J1 = ꢀ4.8 cmꢀ1, J2 = ꢀ26.2 cmꢀ1
,
’ AUTHOR INFORMATION
J3 = ꢀ24.6 cmꢀ1, and g = 2.390 with R = 2.1 ꢁ 10ꢀ5
.
Corresponding Author
*E-mail: albert.escuer@ub.edu.
Correlations for the coupling in CuII or MnIII oximato bridged
systems have been well-established in the last recent years and
taking into account the orbitals of the NiII cation involved in the
superexchange interaction has been widely assumed a response
closer to CuII (decrease of the antiferromagnetic interaction with
the increase of the MꢀOꢀNꢀM torsion angle)28 than MnIII
(strong dependence of J with the torsion with even reversal of the
sign of the coupling constants for torsion angles around 30° in
triangular compounds).29 Very recently, on the basis of experi-
mental correlations on the NiꢀOꢀNꢀNi pathway, an inter-
mediate response between CuII and MnIII has been proposed,30
suggesting a decrease of the antiferromagnetic interaction for
increasing torsions up to around 75ꢀ80°, at which point the
switch to ferromagnetic interaction may be possible. The quasi
negligible values of J found for compounds 1 and 2 provide a nice
example of the magnetic response of the system NiꢀOꢀNꢀNi
with large torsion angles close to orthogonality. As was sug-
gested, this superexchange pathway experimentally reveals to
transmit a quasi negligible interaction in contrast with the well-
established medium-strong antiferromagnetic coupling widely
reported for planar or weakly distorted bridges.1
’ ACKNOWLEDGMENT
This work was supported by the CICYT projects CTQ2009-
07264. A.E. acknowledges the support of the ICREA-Academia
Research Award. The authors are grateful to Dr. G. Aromí,
Universitat de Barcelona, and to the Spanish MCI for facilitating
access to BM16 at ESRF (EXP16-01-739).
’ REFERENCES
(1) Milios, C. J.; Stamatatos, T. C.; Perlepes, S. P. Polyhedron 2006,
25, 134.
(2) Stamatatos, T. C.; Diamantopoulou, E.; Raptopoulou, C. P.;
Psycharis, V.; Escuer, A.; Perlepes, S. P. Inorg. Chem. 2007, 46, 2350.
(3) Ji, C.-M.; Yang, H.-J.; Zhao, C.-C.; Tangoulis, V.; Cui, A.-L.; Kou,
H.-Z. Cryst. Growth Des. 2009, 9, 4607.
(4) (a) Pajunen, A.; Mutikainen, I.; Saarinen, H.; Orama, M. Z.
Kristallogr. - New Cryst. Struct. 1999, 214, 217. (b) Khanra, S.; Weyhermuller,
T.;Rentschler, E.;Chaudhuri, P.Inorg. Chem. 2005, 44, 8176. (c) Stamatatos,
T. C.; Diamantopoulou, E.; Tasiopoulos, A.; Psycharis, V.; Vicente, R.;
Raptopoulou, C. P.; Nastopoulos, V.; Escuer, A.; Perlepes, S. P. Inorg. Chim.
Acta 2006, 359, 4149. (d) Stamatatos, T. C.; Papatriantafyllopoulou,
C.; Katsoulakou, E.; Raptopoulou, C. P.; Perlepes, S. P. Polyhedron 2007,
26, 1830.
Compound 4 contains two kinds of oximato bridges with
different torsion angles: large NiꢀOꢀNꢀNi torsions are found
for the bridges between the peripheral atoms and the central
cubane unit (117.0° and 119.7°) and lower torsions (around 45°
and 69°) inside the cubane. In agreement with the above general
trends, the found J values show weak antiferromagnetic coupling
for the bridges mediated by large torsion angles (ꢀ4.8 cmꢀ1) and
medium interactions with mean J values around ꢀ25 cmꢀ1 for
the less-distorted bridges.
The remainder of interactions in compound 4 and those found
in 3 follow the well-established correlations for NiꢀOꢀNi bond
angles with increasing antiferromagnetic interaction for larger
bond angles.26
(5) Psomas, G.; Dendrinou-Samara, C.; Alexiou, M.; Tsohos, A.;
Raptopoulou, C. P.; Terzis, A.; Kessissoglou, D. P. Inorg. Chem. 1998,
37, 6556.
(6) (a) Stamatatos, T. C.; Abboud, K. A.; Perlepes, S. P.; Christou, G.
Dalton Trans. 2007, 3861. (b) Papatriantafyllopoulou, C.; Jones, L. F.;
Nguyen, T. D.; Matamoros-Salvador, N.; Cunha-Silva, L.; Paz, F. A. A.;
Rocha, J.; Evangelisti, M.; Brechin, E. K.; Perlepes, S. P. Dalton Trans.
2008, 3153. (c) Stamatatos, T. C.; Escuer, A.; Abboud, K. A.; Raptopoulou,
C. P.; Perlepes, S. P.; Christou, G. Inorg. Chem. 2008, 47, 11825.
(7) Papatriantafyllopoulou, C.; Stamatatos, T. C.; Wernsdorfer, W.;
Teat, S. J.; Tasiopoulos, A.; Escuer, A.; Perlepes, S. P. Inorg. Chem. 2010,
49, 10486.
’ CONCLUSIONS
In the present work, we have reported a new series of NiII
clusters obtained using the dioximato ligand dapdoH2 in carbox-
ylato and noncarboxylato chemistry. The most relevant features
have been the characterization of the larger cluster reported until
now containing pyridyldioximato ligands and the new 5.22111
coordination mode characterized for the deprotonated form
dapdo2ꢀ, which spreads the picture of the coordination possibi-
lities of this kind of ligand. It becomes also relevant that, in
contrast with the well-known 3.11111 coordination mode that
systematically generates a square-planar coordination around the
NiII cations or even favors the easy oxidation to NiIV, the new
5.22111 mode stabilizes octahedral environments. Analysis of the
(8) Coxall, R. A.; Harris, S. G.; Henderson, D. K.; Parsons, S.;
Tasker, P. A.; Winpenny, R. E. P. J. Chem. Soc., Dalton Trans. 2000, 2349.
(9) (a) Glynn, C. W.; Turnbull, M. M. Transition Met. Chem. 2002,
27, 822. (b) Halcrow, M. A.; Kilner, C. A.; Wolowska, J.; McInnes,
E. J. L.; Bridgeman, A. J. New J. Chem. 2004, 28, 228. (c) Bovenzi, B. A.;
Pearse, G. A., Jr. J. Chem. Soc., Dalton Trans. 1997, 2793. (d) Vasilevsky,
I. V.; Stenkamp, R. E.; Lingafelter, E. C.; Rose, N. J. J. Coord. Chem. 1988,
19, 171.
(10) Salonen, M.; Saarinen, H.; Mutikainen, I. J. Coord. Chem. 2008,
61, 1462.
(11) (a) Sproul, G.; Stucky, G. D. Inorg. Chem. 1973, 12, 2898.
(b) Namli, H.; Azaz, A. D.; Karabulut, S.; C-Elen, S.; Kurtaran, R.; Kazak,
C. Transition Met. Chem. 2007, 32, 266.
8900
dx.doi.org/10.1021/ic200895q |Inorg. Chem. 2011, 50, 8893–8901