pubs.acs.org/acsmedchemlett
analogues with improved activity against A2058T ribosomal
mutants.
(8)
(9)
Bernard, D.; Coop, A.; MacKerell, A. D., Jr. 2D Conformation-
ally Sampled Pharmacophore: A Ligand-Based Pharmaco-
phore To Differentiate delta Opioid Agonists from Antagonists.
J. Am. Chem. Soc. 2003, 125, 3103–3107.
Amsterdam, D. Susceptibility Testing of Antimicrobials in Liquid
Media. In Antibiotics in Laboratory Medicine, 4th ed.; Lorain,
V., Ed.; Williams & Wilkins: Baltimore, 1996; pp 52-111.
In conclusion, we have prepared 4,8,10-tridesmethyl teli-
thromycin (3), a desmethyl analogue of ketolide antibiotic
telithromycin (2), by chemical synthesis. We were able to
prepare a total of 12.1 mg of analogue 3 in 23 operations (42
steps overall, 31 steps in the longest linear sequence), which
was found to inhibit bacterial growth. In addition, our
analogue was more potent than telithromycin against an
A2058T mutant. While the bioactivity data do not directly
support our original hypothesis, the synthesis and evaluation
of telithromycin analogues bearing methyl at C8 and C10 are
needed to address this. We are currently working toward that
end; results will be reported in due course.
(10) Oh, H. S.; Xuan., R.; Kang, H.-Y. Total synthesis of methymy-
cin. Org. Biomol. Chem. 2009, 7, 4458–4463.
(11) Martin, S. F.; Lee, W.-C.; Pacofsky, G. J.; Gist, R. P.; Mulhern,
T. A. Strategies for macrolide synthesis. Aconcise approach to
protected seco-acids of erythronolides A and B. J. Am. Chem.
Soc. 1994, 116, 4674–4688.
(12) For the synthesis of 8, see the Supporting Information.
(13) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom,
T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. Simple stereo-
selective version of the Claisen rearrangement leading to
trans-trisubstituted olefinic bonds. Synthesis of squalene.
J. Am. Chem. Soc. 1970, 92, 741–743.
(14) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Catalytic
asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483–
2547.
(15) Dale, J. A.; Dull, D. L.; Mosher, H. S. R-methoxy-R-trifluoro-
methylphenylacetic acid, a versatile reagents for the deter-
mination of enantiomeric composition of alcohols and
amines. J. Org. Chem. 1969, 34, 2543–2549.
(16) Importantly, methylation of C6 with NaH resulted in an
undesired migration of the TES group from the C5 hydroxyl
and concomitant methylation at C5.
(17) Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective aldol
condensations. 2. Erythro-selective chiral aldol condensa-
tions via boron enolates. J. Am. Chem. Soc. 1981, 103,
2127–2109.
(18) Xuan, R.; Oh, H.-S.; Lee, Y.; Kang, H.-Y. Total Synthesis of 10-
Deoxymethynolide and Narbonolide. J. Org. Chem. 2008, 73,
1456–1461.
(19) Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for
the conversion of primary and secondary alcohols to alde-
hydes and ketones. J. Org. Chem. 1983, 48, 4155–4156.
(20) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
Activity of a New Generation of Ruthenium-Based Olefin Me-
tathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroi-
midazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956.
(21) With the tertiary C12 hydroxyl unprotected, we observed
glycosylation at this position over C5.
(22) Woodward, R. B.; et al. Asymmetric total synthesis of
erythromycin. 3. Total synthesis of erythromycin. J. Am.
Chem. Soc. 1981, 103, 3215–3217.
(23) Velvadapu, V.; Andrade, R. B. Concise syntheses of D-deso-
samine, 2-thiopyrimidinyl desosamine donors and methyl
desosaminide analogues from D-glucose. Carbohydr. Res.
2008, 343, 145–150.
(24) Denis, A.; Agouridas, C.; Auger, J.-M.; Benedeti, Y.; Bonnefoy, A.;
Bretin, F.; Chantot, F.; Dussarat, A.; Fromentin, C.; D'Ambrieres,
S. G.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N.;
Pejac, J.-M.; Perron, S. Synthesis and Antibacterial Activity of
HMR 3647: A new ketolide highly potent against erythromycin-
resistant and -susceptible pathogens. Bioorg. Med. Chem. Lett.
1999, 9, 3075–3080.
(25) Baker, W. R.; Clark, J. D.; Stephens, R. L.; Kim, K. H. Modification
of Macrolide Antibiotics. Synthesis of 11-Deoxy-11-(carboxy-
amino)-6-O-methylerythromycin A-11,12-(Cyclic esters) via an
intramolecular Michael reaction of O-carbamates with an R,β-
unsaturated ketone. J. Org. Chem. 1988, 53, 2340–2345.
SUPPORTING INFORMATION AVAILABLE General experi-
mental protocols, including the preparation of diol 10, and char-
acterization of all new compounds. This material is available free of
AUTHOR INFORMATION
Corresponding Author: *E-mail: randrade@temple.edu.
Present Addresses: Department of Pharmaceutical Sciences,
University of New England, Portland, Maine 04103.
Funding Sources: This work was supported by the NIH
(AI080968 and GM070855).
ACKNOWLEDGMENT We thank Dr. Alexander Mankin
(University of Illinois at Chicago) for helpful suggestions and
Dr. Charles DeBrosse (Temple University, Director of NMR Facilities)
for kind assistance with 2D NMR experiments. We also thank
Dr. Richard Pederson (Materia, Inc.) for catalyst support.
REFERENCES
(1)
Doern, G. V.; Heilmann, K. P.; Huynh, H. K.; Rhomberg, P. R.;
Coffman, S. L.; Brueggemann, A. B. Antimicrobial resistance
among clinical isolates of Streptococcus pneumoniae in the
United States during 1999-2000, including a comparison of
resistance rates since 1994-1995. Antimicrob. Agents Che-
mother. 2001, 45, 1721–1729.
(2)
(3)
(4)
Fox, J. L. The business of developing antibacterials. Nat.
Biotechnol. 2006, 24, 1521–1528.
Walsh, C. T. Where will new antibiotics come from? Nat. Rev.
Microbiol. 2003, 1, 65–70.
Spahn, C. M.; Prescott, C. D. Throwing a spanner in the
works: Antibiotics and the translation apparatus. J. Mol. Med.
1996, 74, 423–439.
(5)
(6)
(7)
Bryskier, A.; Denis, A. Ketolides: Novel antibacterial agents
designed to overcome resistance to erythromycin A within
gram-positive cocci. In Macrolide Antibiotics; Schonfeld, W.,
Kirst, H. A., Eds.; Verlag: Basel, 2002; pp 97-140.
Tu, D.; Blaha, G.; Moore, P. B.; Steitz, T. A. Structures of MLSBK
Antibiotics Bound to Mutated Large Ribosomal Subunits
Provide a Structural Explanation for Resistance. Cell 2005,
121, 257–270.
Celmer, W. D. Stereochemical problems in macrolide anti-
biotics. Pure Appl. Chem. 1971, 28, 413–453.
r
2010 American Chemical Society
71
DOI: 10.1021/ml1002184 ACS Med. Chem. Lett. 2011, 2, 68–72
|