10.1002/anie.202004982
Angewandte Chemie International Edition
COMMUNICATION
Bexrud, M. Lautens Org. Lett. 2010, 12, 3160–3163. (e) A. Saxena, H.
W. Lam, Chem. Sci. 2011, 2, 2326. (f) S. M. Podhajsky, Y. Iwai, A. Cook-
Sneathen, M. S. Sigman, Tetrahedron 2011, 67, 4435–4441. (g) E. W.
Werner, T.-S. Mei, A. J. Burckle, M. S. Sigman, Science 2012, 338,
1455–1458. (h) T.-S. Mei, E. W. Werner, A. J. Burckle, M. S. Sigman, J.
Am. Chem. Soc. 2013, 135, 6830–6833. (i) C. M. So, S. Kume, T.
Hayashi, J. Am. Chem. Soc. 2013, 135, 10990–10993. (j) T.-S. Mei, H.
H. Patel, M. S. Sigman, Nature 2014, 508, 340–344. (k) I. D. Roy, A. R.
Burns, G. Pattison, B. Michel, A. J. Parker, H. W. Lam, Chem. Commun.
2014, 50, 2865. (l) C. Zhang, C. B. Santiago, J. M. Crawford, M. S.
Sigman, J. Am. Chem. Soc. 2015, 137, 15668–15671. (m) S. D. Friis, M.
T. Pirnot, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 8372–8375. (n)
L. Oxtoby, Z.-Q. Li, V. Tran, T. Erbay, R. Deng, P. Liu, K. M. Engle,
Angew. Chem. Int. Ed. 2020, DOI 10.1002/anie.202001069; Angew.
Chem. 2020, DOI 10.1002/ange.202001069.
14554–14559. (g) N. J. Adamson, S. Park, P. Zhou, A. L. Nguyen, S. J.
Malcolmson, Org. Lett. 2020, 22, 2032–2037. (h) C. I. Onyeagusi, X.
Shao, S. J. Malcolmson, Org. Lett. 2020, 22, 1681–1685.
Hydroalkynylation: (i) M. Shirakura, M. Suginome, Angew. Chem. Int. Ed.
2010, 49, 3827–3829; Angew. Chem. 2010, 122, 3915-3917. (j) T.
Sawano, A. Ashouri, T. Nishimura, T. Hayashi, J. Am. Chem. Soc. 2012,
134, 18936–18939. Hydrocyanation: (k) B. Saha, T. V. RajanBabu, Org.
Lett. 2006, 8, 4657–4659.
[8]
[9]
For examples of enantioselective hydrovinylation of 1,3-dienes, see: (a)
A. Zhang, T. V. RajanBabu, J. Am. Chem. Soc. 2006, 128, 54–55. (b) B.
Saha, C. R. Smith, T. V. RajanBabu, J. Am. Chem. Soc. 2008, 130,
9000–9005. (c) R. K. Sharma, T. V. RajanBabu, J. Am. Chem. Soc. 2010,
132, 3295–3297. (d) J. P. Page, T. V. RajanBabu, J. Am. Chem. Soc.
2012, 134, 6556–6559. (e) Y. N. Timsina, R. K. Sharma, T. V.
RajanBabu, Chem. Sci. 2015, 6, 3994–4008.
[4]
(a) R. K. Thalji, J. A. Ellman, R. G. Bergman, J. Am. Chem. Soc. 2004,
126, 7192–7193. (b) S. J. O’Malley, K. L. Tan, A. Watzke, R. G. Bergman,
J. A. Ellman, J. Am. Chem. Soc. 2005, 127, 13496–13497. (c) R. M.
Wilson, R. K. Thalji, R. G. Bergman, J. A. Ellman, Org. Lett. 2006, 8,
1745–1747. (d) H. Harada, R. K. Thalji, R. G. Bergman, J. A. Ellman, J.
Org. Chem. 2008, 73, 6772–6779. (e) C. S. Sevov, J. F. Hartwig, J. Am.
Chem. Soc. 2013, 135, 2116–2119. (f) T. Shibata, T. Shizuno, Angew.
Chem. Int. Ed. 2014, 53, 5410–5413; Angew. Chem. 2014, 126, 5514-
5517. (g) G. Song, W. W. N. O., Z. Hou, J. Am. Chem. Soc. 2014, 136,
12209–12212. (h) T. Shirai, Y. Yamamoto, Angew. Chem. Int. Ed. 2015,
54, 9894–9897; Angew. Chem. 2015, 127, 10032-10035. (i) T. Shibata,
N. Ryu, H. Takano, Adv. Synth. Catal. 2015, 357, 1131–1135. (j) P.-S.
Lee, N. Yoshikai, Org. Lett. 2015, 17, 22–25. (k) M. Hatano, Y. Ebe, T.
Nishimura, H. Yorimitsu, J. Am. Chem. Soc. 2016, 138, 4010–4013. (l)
S. Grélaud, P. Cooper, L. J. Feron, J. F. Bower, J. Am. Chem. Soc. 2018,
140, 9351–9356. (m) K. Ozols, Y.-S. Jang, N. Cramer, J. Am. Chem.
Soc. 2019, 141, 5675-5680. (n) J. Diesel, D. Grosheva, S. Kodama, N.
Cramer, Angew. Chem. Int. Ed. 2019, 58, 11044-11048; Angew. Chem.
2019, 131, 11160-11164. (o) K. Sakamoto, T. Nishimura, Adv. Syn.
Catal. 2019, 361, 2124–2128.
For a review of reductive couplings of 1,3-dienes, see: (a) M. Holmes, L.
A. Schwartz, M. J. Krische, Chem. Rev. 2018, 118, 6026–6052. For
examples of enantioselective reductive couplings of 1,3-dienes, see: (b)
Y. Yang, S.-F. Zhu, H.-F. Duan, C.-Y. Zhou, L.-X. Wang, Q.-L. Zhou, J.
Am. Chem. Soc. 2007, 129, 2248–2249. (c) Y. Sato, Y. Hinata, R. Seki,
Y. Oonishi, N. Saito, Org. Lett. 2007, 9, 5597–5599. (d) J. R. Zbieg, J.
Moran, M. J. Krische, J. Am. Chem. Soc. 2011, 133, 10582–10586. (e)
J. R. Zbieg, E. Yamaguchi, E. L. McInturff, M. J. Krische, Science 2012,
336, 324–327. (f) E. L. McInturff, E. Yamaguchi, M. J. Krische, J. Am.
Chem. Soc. 2012, 134, 20628–20631. (g) K. D. Nguyen, D. Herkommer,
M. J. Krische, J. Am. Chem. Soc. 2016, 138, 14210–14213. (h) Y.-Y. Gui,
N. Hu, X.-W. Chen, L. Liao, T. Ju, J.-H. Ye, Z. Zhang, J. Li, D.-G. Yu, J.
Am. Chem. Soc. 2017, 139, 17011–17014. (i) C. Li, R. Y. Liu, L. T.
Jesikiewicz, Y. Yang, P. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2019,
141, 5062–5070. (j) B. Fu, X. Yuan, Y. Li, Y. Wang, Q. Zhang, T. Xiong,
Q. Zhang, Org. Lett. 2019, 21, 3576–3580. (k) C. Li, K. Shin, R. Y. Liu,
S. L. Buchwald, Angew. Chem. Int. Ed. 2019, 58, 17074; Angew. Chem.
2019, 131, 17230-17236. (l) X.-W. Chen, L. Zhu, Y.-Y. Gui, K. Jing, Y.-
X. Jiang, Z.-Y. Bo, Y. Lan, J. Li, D.-G. Yu, J. Am. Chem. Soc. 2019, 141,
18825–18835.
[5]
[6]
For recent reviews on enantioselelctive diene functionalizations, see: (a)
Y. Xiong, Y. Sun, G. Zhang, Tetrahedron Lett. 2018, 59, 347–355. (b) X.
Wu, L.-Z. Gong, Synthesis 2019, 51, 122–134. (c) N. J. Adamson, S. J.
Malcolmson, ACS Catal. 2020, 10, 1060–1076.
[10] J. S. Marcum, C. C. Roberts, R. S. Manan, T. N. Cervarich, S. J. Meek,
J. Am. Chem. Soc. 2017, 139, 15580–15583.
[11] For a related (CDC)-Rh-catalzyed hydroallyltion, see: Marcum, J. S.;
Cervarich, T. N.; Manan, R. S.; Roberts, C. C.; Meek, S. J. ACS Catal.
2019, 9, 5881–5889.
For catalytic non-enantioselective hydroarylation reactions of 1,3-dienes,
see: (a) M.-Z. Wang, M.-K. Wong, C.-M. Che, Chem. Eur. J. 2008, 14,
8353–8364. (b) L. Liao, M. S. Sigman, J. Am. Chem. Soc. 2010, 132,
10209–10211. (c) M. Niggemann, N. Bisek, Chem. Eur. J. 2010, 16,
11246–11249. (d) C. C. Roberts, D. M. Matías, M. J. Goldfogel, S. J.
Meek, J. Am. Chem. Soc. 2015, 137, 6488–6491. (e) L. Gu, L. M. Wolf,
A. Zieliński, W. Thiel, M. Alcarazo, J.Am. Chem. Soc. 2017, 139, 4948–
4953. (f) L.-J. Xiao, L. Cheng, W.-M. Feng, M.-L. Li, J.-H. Xie, Q.-L. Zhou,
Angew. Chem. Int. Ed. 2018, 57, 461–464; ; Angew. Chem. 2017, 130,
470-473.
[12] Y.-G. Chen, B. Shuai, X.-T. Xu, Y.-Q. Li, Q.-L. Yang, H. Qiu, K. Zhang,
P. Fang, T.-S. Mei, J. Am. Chem. Soc. 2019, 141, 3395–3399.
[13] X.-Y. Lv, C. Fan, L.-J. Xiao, J.-H. Xie, Q.-L. Zhou, CCS Chem. 2019, 1,
328–334.
[14] For references on the mechanism of ligand-to-ligand hydrogen transfer,
see: (a) J. Guihaumé, S. Halbert, O. Eisenstein, R. N. Perutz,
Organometallics 2012, 31, 1300–1314. (b) J. S. Bair, Y. Schramm, A. G.
Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014,
136, 13098–13101. (c) L.-J. Xiao, X.-N. Fu, M.-J. Zhou, J.-H. Xie, L.-X.
Wang, X.-F. Xu, Q.-L. Zhou, J. Am. Chem. Soc. 2016, 138, 2957–2960.
(d) A. J. Nett, J. Montgomery, P. M. Zimmerman, ACS Catal. 2017, 7,
7352–7362. (e) S. Tang, O. Eisenstein, Y. Nakao, S. Sakaki,
Organometallics 2017, 36, 2761–2771.
[7]
For
representative
examples
of
enantioselective
C–C
hydrofunctionalization of 1,3-dienes that proceed via electrophilic metal-
allyl intermediates, see: Hydroarylation: (a) S. M. Podhajsky, Y. Iwai, A.
Cook-Sneathen, M. S. Sigman, Tetrahedron 2011, 67, 4435–4441. For
a recent related enantioselective hydroarylation of alkynes, see: (b) Cruz,
F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc.
2017, 139, 10641–10644. Hydroalkylation: (c) Leitner, A.; Larsen, J.;
Steffens, C.; Hartwig, J. F. J. Org. Chem. 2004, 69, 7552–7557. (d) N. J.
Adamson, K. C. E. Wilbur, S. J. Malcolmson, J. Am. Chem. Soc. 2018,
140, 2761–2764. (e) L. Cheng, M.-M. Li, L.-J. Xiao, J.-H. Xie, Q.-L. Zhou,
J. Am. Chem. Soc. 2018, 140, 11627–11630. (f) Q. Zhang, H. Yu, L.
Shen, T. Tang, D. Dong, W. Chai, W. Zi, J. Am. Chem. Soc. 2019, 141,
[15] A difference in solubility was observed with MeOH in comparison to
EtOH. The L9–Ni complex appears to be partially insoluble in MeOH,
which likely results in lower yields, but no significant change in rr.
[16] H. Fang, Z. Yang, L. Zhang, W. Wang, Y. Li, X. Xu, S. Zhou, Org. Lett.
2016, 18, 6022–6025.
[17] For protonation at the diene of a (bis-phosphine)-Ni-diene complex, see:
A. Mifleur, D. S. Mérel, A. Mortreux, I. Suisse, F. Capet, X. Trivelli, M.
Sauthier, S. A. Macgregor, ACS Catal. 2017, 7, 6915–6923.
This article is protected by copyright. All rights reserved.