The Journal of Organic Chemistry
NOTE
subsequently converted to substituted cyclopentyl[b]indoline
compounds without loss of enantioselectivities. Further investi-
gation into and application of this methodology are still ongoing.
corresponding alcohol 5d with NaCNBH3, and enantiomeric excess was
determined by HPLC with an AS-H column (hexane/i-PrOH = 80:20),
1.0 mL/min; major enantiomer tR = 14.1 min, minor enantiomer tR =
19.4 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(4-bromophenyl)propanal
’ EXPERIMENTAL SECTION
(4e): colorless oil (64 mg, 81% yield, 4:1 dr, 94% ee), [R]20 = +64
D
(c 1.0, CH2Cl2); IR (KBr) 3410, 2933, 2732, 1714, 1675, 1607, 1466,
1381, 1288, 1009, 761, 539 cmÀ1; 1H NMR (400 MHz, CDCl3) δ 9.90
(s, 1H), 8.21 (s, 1H), 7.45 (t, J = 7.2 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H),
7.02 (t, J = 7.6 Hz, 1H), 4.84 (d, J = 8.4 Hz, 2H), 4.60 (s, 1H), 4.06
(s, 2H), 3.00 (s, 1H), 2.64 (s, 3H) ; 13C NMR (100 MHz, CDCl3) δ
200.1, 198.1, 168.6, 137.1, 134.7, 131.1, 129.8, 125.0, 124.0, 122.9, 121.6,
118.2, 66.3, 43.0, 40.3, 24.1; HRMS (ESI) m/z calcd for C19H17BrNO3
[M + H]+ 386.0386; found 386.0383. The product was converted to
corresponding alcohol 5e with NaCNBH3, and enantiomeric excess was
determined by HPLC with an AS-H column (hexane/i-PrOH = 90:10),
1.0 mL/min; major enantiomer tR = 38.9 min, minor enantiomer tR =
46.1 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(4-chlorophenyl)propanal
(4f): colorless oil (60 mg, 88% yield, 4:1 dr, 95% ee), [R]20D = +186 (c
1.0, CH2Cl2); IR (KBr) 3412, 2931, 2732, 1715, 1676, 1607, 1466, 1381,
1287, 1094, 1011, 761 cmÀ1; 1H NMR (400 MHz, CDCl3) δ 9.93 (s,
1H), 8.23 (s, 1H), 7.45 (t, J = 6.8 Hz, 2H), 7.02À6.89 (m, 5H), 4.60 (s,
1H), 4.07 (s, 2H), 2.98 (s, 1H), 2.66 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 200.1, 198.1, 168.6, 153.3, 137.1, 134.2, 133.5, 129.5, 128.2,
126.2, 125.1, 124.0, 122.9, 118.3, 66.4, 43.1, 40.3, 24.0; HRMS (ESI)
m/z calcd for C19H17ClNO3 [M + H]+ 342.0891; found 342.0888. The
product was converted to corresponding alcohol 5f with NaCNBH3, and
enantiomeric excess was determined by HPLC with an AS-H column
(hexane/i-PrOH = 90:10), 1.0 mL/min; major enantiomer tR = 36.6
min, minor enantiomer tR = 43.6 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(2-methoxyphenyl)propa-
nal (4g): colorless oil (57 mg, 85% yield, 4:1 dr, 96% ee), [R]20D = +440
(c 1.0, CH2Cl2); IR (KBr) 3408, 2938, 2731, 1714, 1676, 1605, 1465,
1383, 1287, 1245, 1027, 758 cmÀ1; 1H NMR (400 MHz, CDCl3) δ 9.94
(s, 1H), 8.20 (d, J = 6.4 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 8.0
Hz, 1H), 6.96À6.92 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 6.61À6.56 (m,
2H), 4.83À4.78 (m, 1H), 4.61 (s, 1H), 4.15À4.05 (m, 1H), 3.72 (s, 3H),
2.87 (d, J = 19.2 Hz, 1H), 2.65 (s, 3H) ; 13C NMR (100 MHz,CDCl3) δ
200.9, 198.9, 169.4, 157.0, 153.5, 136.6, 128.5, 128.1, 125.1, 124.4, 123.3,
122.6, 120.1, 117.8, 109.9, 66.5, 55.1, 42.9, 32.2, 23.7; HRMS (ESI) m/z
calcd for C20H19NNaO4[M + Na]+ 360.1206; found 360.1202. The
product was converted to corresponding alcohol 5g with NaCNBH3,
and enantiomeric excess was determined by HPLC with an AS-H
column (hexane/i-PrOH = 85:15), 1.0 mL/min; major enantiomer
tR = 16.6 min, minor enantiomer tR = 21.0 min.
Representative Procedure for the Synthesis of 2-Substi-
tuted Indolin-3-ones. To a solution of R,β-unsaturated aldehyde 3
(0.4 mmol, 2.0 equiv), catalyst 1a (13 mg, 0.04 mmol, 0.2 equiv), and
H2O (7.2 μL, 0.4 mmol, 2.0 equiv) in THF (0.4 mL) cooled at À10 °C
was added 1-acetylindolin-3-one 2 (0.2 mmol, 1.0 equiv). The resulting
solution was stirred at À10 °C until 2 was consumed as monitored by
TLC. The reaction mixture was concentrated in vacuo and purified by
flash column chromatography (PE/EA = 2:1).
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-phenylpropanal (4a):
colorless oil (51 mg, 84% yield, 6:1 dr, 94% ee), [R]20D = +86 (c 1.0,
CH2Cl2); IR (KBr) 3410, 2925, 2731, 1715, 1675, 1464, 1381, 1288,
762, 702 cmÀ1; 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 8.17 (s,
1H), 7.41À7.35 (m, 2H), 6.98À6.92 (m, 6H), 4.59 (s, 1H), 4.07 (s, 2H),
3.02 (s, 1H), 2.62 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 200.5, 198.2,
168.6, 153.2, 136.6, 135.6, 128.2, 127.9, 127.5, 125.2, 123.7, 122.7, 118.1,
66.5, 43.0, 40.8, 24.0; HRMS (ESI) m/z calcd for C19H18NO3 [M + H]+
308.1281, found 308.1275. The product was converted to correspond-
ing alcohol 5a with NaCNBH3, and enantiomeric excess was determined
by HPLC with an AS-H column (hexane/i-PrOH = 80:20), 1.0 mL/min;
major enantiomer tR = 12.9 min, minor enantiomer tR = 18.3 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(2-chlorophenyl)propanal
(4b): colorless oil (62 mg, 91% yield, 4:1 dr, 94% ee), [R]20D = +329
(c 1.0, CH2Cl2); IR (KBr) 3379, 2840, 2732, 1707, 1668, 1601, 1462,
1
1373, 1317, 1004, 757 cmÀ1; H NMR (400 MHz, CDCl3) δ 9.90
(s, 1H), 8.22 (s, 1H), 7.47À7.39 (m, 2H), 7.13 (dd, J = 2.0, 7.2 Hz, 1H),
7.01À6.89 (m, 4H), 4.82 (s, 1H), 4.66 (s, 1H), 4.06 (s, 1H), 2.93
(s, 1H), 2.64 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 199.9, 198.7,
169.2, 153.4, 136.9, 134.7, 134.0, 129.5, 128.8, 128.6, 126.5, 125.2, 123.8,
122.7, 118.4, 66.6, 43.5, 36.2, 23.9; HRMS (ESI) m/z calcd for
C19H17ClNO3 [M + H]+ 342.0891; found 342.0898. The product
was converted to corresponding alcohol 5b with NaCNBH3, and
enantiomeric excess was determined by HPLC with an AS-H column
(hexane/i-PrOH = 70:30), 1.0 mL/min; major enantiomer tR = 8.8 min,
minor enantiomer tR = 16.2 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(2-nitrophenyl)propanal
(4c): colorless oil (63 mg, 89% yield, 6:1 dr, 92% ee, [R]20 = +322
D
(c 1.0, CH2Cl2); IR (KBr) 3412, 2841, 2735, 1715, 1681, 1607, 1526,
1466, 1379, 1285, 1009, 763, 599 cmÀ1; 1H NMR (400 MHz, CDCl3) δ
9.92 (s, 1H), 8.19 (s, 1H), 7.49À7.39 (m, 3H), 7.26À7.18 (m, 2H), 7.13
(t, J = 7.2 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 5.12 (s, 1H), 4.65 (s, 1H),
4.13 (s, 1H), 3.10 (s, 1H), 2.54 (s, 3H); 13C NMR (100 MHz, CDCl3) δ
199.3, 198.3, 168.8, 150.7, 137.0, 132.0, 130.0, 129.1, 128.3, 124.3, 124.2,
124.0, 123.7, 118.6, 66.4, 42.8, 34.0, 23.4; HRMS (ESI) m/z calcd for
C19H17N2O5 [M + H]+ 353.1132; found 353.1137. The product was
converted to corresponding alcohol 5c with NaCNBH3, and enantio-
meric excess was determined by HPLC with an AD-H column (hexane/
i-PrOH = 70:30), 1.0 mL/min; minor enantiomer tR = 16.7 min, major
enantiomer tR = 17.9 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(3-chlorophenyl)propanal
(4d): colorless oil (62 mg, 91% yield, 6:1 dr, 90% ee), [R]20D = +109
(c 1.0, CH2Cl2); IR (KBr) 3408, 2932, 2732, 1713, 1676, 1606, 1467,
1383, 1290, 1093, 763, 694, 603 cmÀ1; 1H NMR (400 MHz, CDCl3)
δ 9.92 (s, 1H), 8.21 (s, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.02À6.92
(m, 4H), 6.48 (d, J = 6.8 Hz, 2H), 4.60 (s, 1H), 4.06 (s, 2H), 3.01 (s,
1H), 2.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 200.0, 198.0, 168.5,
153.2, 137.7, 137.0, 133.9, 129.2, 128.3, 127.8, 126.5, 124.0, 122.9, 118.2,
66.3, 42.9, 40.7, 24.0; HRMS (ESI) m/z calcd for C19H17ClNO3
[M + H]+ 342.0891; found 342.0894. The product was converted to
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(4-methoxyphenyl)propa-
nal (4h): colorless oil (62 mg, 92% yield, 5:1 dr, 86% ee), [R]20D = +135
(c 1.0, CH2Cl2); IR (KBr) 3406, 2937, 2617, 1713, 1676, 1608, 1514,
1
1466, 1384, 1290, 1251, 1184, 1034, 763, 538 cmÀ1; H NMR (400
MHz, CDCl3) δ 9.90 (s, 1H), 8.20 (s, 1H), 7.41À7.37 (m, 2H), 6.96 (t,
J = 7.2 Hz, 1H), 6.86 (d, J = 7.2 Hz, 2H), 6.51 (d, J = 8.8 Hz, 2H), 4.55 (s,
1H), 4.01 (s, 2H), 3.59 (s, 3H), 2.98 (s, 1H), 2.62 (s, 3H) ; 13C NMR
(100 MHz,CDCl3) δ 200.7, 198.5, 168.8, 158.8, 136.8, 129.2, 127.6,
125.2, 123.8, 122.8, 118.6, 118.2, 113.4, 66.7, 55.0, 43.3, 40.2, 24.0;
HRMS (ESI) m/z calcd for C20H20NO4 [M + H]+ 338.1387; found
338.1391. The product was converted to corresponding alcohol 5h with
NaCNBH3, and enantiomeric excess was determined by HPLC with an
AS-H column (hexane/i-PrOH = 80:20), 1.0 mL/min; major enantio-
mer tR = 20.8 min, minor enantiomer tR = 30.1 min.
(S)-3-((R)-1-Acetyl-3-oxoindolin-2-yl)-3-(p-tolyl)propanal (4i):
colorless oil (60 mg, 94% yield, 6:1 dr, 86% ee), [R]20D = +116 (c 1.0,
CH2Cl2); IR (KBr) 3378, 2974, 2738, 1714, 1674, 1607, 1465, 1382,
1
1291, 1092, 762 cmÀ1; H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H),
7553
dx.doi.org/10.1021/jo201123p |J. Org. Chem. 2011, 76, 7551–7555