Supramolecular assemblies of some crowns
Russ.Chem.Bull., Int.Ed., Vol. 60, No. 2, February, 2011
281
(С(7)), 144.94 (С(4)), 149.14 (С(12)), 149.78 (С(11)), 150.14
(С(2), С(6)).
The structure, stoichiometry, and stability of the comꢀ
plexes formed were studied using a combination of physiꢀ
cochemical methods including 1H and 13С NMR spectroꢀ
scopy, UV spectroscopy, ESI (electrospray ionization at
atmospheric pressure) mass spectrometry, and Xꢀray difꢀ
fraction analysis.
Ligand 1 in the presence of 0.5 equiv. KClO4. Ligand 1 (2.2 mg,
0.006 mmol) and KClO4 (0.4 mg, 0.003 mmol) were dissolved in
CD3CN (0.6 mL) under red light. 1H NMR, δ: 3.67—3.68 (m, 4 Н,
H(18), H(19)); 3.76—3.78 (m, 8 Н, H(16), H(17), H(20), H(21));
3.95—3.97 (m, 2 H, H(22)); 4.02—4.04 (m, 2 H, H(15)); 6.82
(d, 1 Н, Н(13), J = 8.4 Hz); 6.98 (s, 1 Н, Н(10)); 6.98 (d, 1 Н, Н(7),
J = 16.3 Hz); 7.12 (d, 1 H, Н(14), J = 9.7 Hz); 7.32 (d, 1 Н,
Н(8), J = 16.3 Hz); 7.36 (d, 2 Н, Н(3), Н(5), J = 5.7 Hz); 8.47
(d, 2 Н, Н(2), Н(6), J = 5.3 Hz). 13C NMR, δ: 67.16—67.33
(С(15), С(16), С(21), С(22)), 67.84, 67.87 (С(18), С(19)), 68.67,
68.72 (С(17), С(20)), 110.95 (С(10)), 112.97 (С(13)), 120.53
(С(3), С(5)), 121.46 (С(14)), 124.32 (С(8)), 130.10 (С(9)),
132.51 (С(7)), 144.74 (С(4)), 147.85 (С(12)), 148.38 (С(11)),
150.06 (С(2), С(6)).
Experimental
Potassium perchlorate was dried in vacuo at 230 °C. The
syntheses of 4ꢀ[2ꢀ(6,7,9,10,12,13,15,16ꢀoctahydroꢀ5,8,11,14,17ꢀ
pentaoxabenzocyclopentadecenꢀ2ꢀyl)vinyl]pyridine (1) and
4ꢀ[2ꢀ(3,4ꢀdimethoxyphenyl)vinyl]pyridine (2) have been deꢀ
scribed earlier.13 Preparation of solutions and all studies were
carried out under red light.
Acetonitrile (special purity grade, sort 1, KRIOKhROM)
was used for spectrophotometry. Electronic absorption spectra
were recorded on a SpecordꢀM40 spectrophotometer (Carl Zeiss
Jena) connected with a computer. Control of the spectroꢀ
photometer, data collection, and simplest computer processing
of spectra were performed by the SPECORD standard program
(version 2.0, Etalon). Fluorescence emission spectra were obꢀ
tained on a Shimadzu RFꢀ5301 PC fluorimeter connected with
a computer. Control of the spectrofluorimeter and data collecꢀ
tion were performed using the Hyper RF 1.57 program.
1H and 13С NMR spectra were recorded on an Avance 600
spectrometer (Bruker) in acetonitrileꢀd3 at frequencies of 600.22
and 150.93 MHz, respectively. Chemical shifts were determined
relative to residual signals of the solvent (CD3CN) and recalꢀ
culated to the internal standard (Me4Si). The gsꢀHMQC,
gsꢀHMBS, and gsꢀCOSY 2D procedures with pulse field gradiꢀ
ents were used for signal assignment in NMR spectra. The phaseꢀ
sensitive gsꢀNOESY or gsꢀROESY 2D procedures were used for
structural assignments.
Mass spectra (ESI) were detected in the mode of full mass
scanning of positive ions on a Finnigan LCQ Advantage tandem
dynamic mass spectrometer (USA) equipped with a mass anaꢀ
lyzer with an octapole ionic trap, an MS Surveyor pump, a Surꢀ
veyor autosampler, a SchmidlinꢀLab nitrogen generator (Gerꢀ
many), and a system of data collection and processing using the
X Calibur program, version 1.3 (Finnigan). The temperature of
the transfer capillary was 150 °C, and the field strength between
the needle and the counter electrode was 4.5 kV. Samples with
10–4 mol L–1 concentration in a MeCN solution were introꢀ
duced into the ion source with direct inlet with a low rate of
50 μL min–1 through a Reodyne injector with a loop of 20 μL.
1H and 13C NMR spectra of ligands 1 and 2 and their comꢀ
plexes with potassium perchlorate and phthalic acid (H2A). Ligand 1.
Ligand 1 (2.2 mg, 0.006 mmol) was dissolved in CD3CN
(0.6 mL) under red light. 1H NMR, δ: 3.60—3.62 (m, 4 Н, H(18),
H(19)); 3.63—3.65 (m, 4 Н, H(17), H(20)); 3.78—3.82 (m, 4 Н,
H(16), H(21)); 4.07—4.09 (m, 2 H, H(15)), 4.11—4.14 (m, 2 H,
H(22)); 6.91 (d, 1 Н, Н(13), J = 8.3 Hz); 7.03 (d, 1 Н, Н(7),
J = 16.3 Hz); 7.11 (dd, 1 H, Н(14), J = 8.4 Hz, J = 2.0 Hz); 7.20
(d, 1 Н, Н(10), J = 2.1 Hz); 7.35 (d, 1 Н, Н(8), J = 16.3 Hz);
7.41 (d, 2 Н, Н(3), Н(5), J = 6.4 Hz); 8.49 (d, 2 Н, Н(2), Н(6),
J = 6.2 Hz). 13C NMR, δ: 68.54 (С(15)), 68.68 (С(22)), 68.95
(С(16)), 69.05 (С(21)), 69.87, 69.92 (С(18), С(19)), 70.56, 70.57
(С(17), С(20)), 111.44 (С(10)), 113.42 (С(13)), 120.54 (С(3),
С(5)), 121.21 (С(14)), 123.94 (С(8)), 129.70 (С(9)), 132.80
Ligand 1 in the presence of 5 equiv. KClO4. Ligand 1 (2.2 mg,
0.006 mmol) and KClO4 (4.2 mg, 0.03 mmol) were dissolved in
CD3CN (0.6 mL) under red light. 1H NMR, δ: 3.71—3.72 (m, 4 Н,
H(18), H(19)); 3.79—3.77 (m, 4 Н, H(17), H(20)); 3.84—3.88
(m, 4 Н, H(16), H(21)); 4.21—4.22 (m, 2 H, H(15)); 4.24—4.25
(m, 2 H, H(22)); 7.03 (d, 1 Н, Н(13), J = 8.3 Hz); 7.12 (d, 1 Н,
Н(7), J = 16.4 Hz); 7.24 (d, 1 H, Н(14), J = 8.3 Hz); 7.29
(s, 1 Н, Н(10)); 7.44 (d, 1 Н, Н(8), J = 16.4 Hz); 7.49 (d, 2 Н,
Н(3), Н(5), J = 6.1 Hz); 8.57 (d, 2 Н, Н(2), Н(6), J = 6.1 Hz).
Ligand 1 in the presence of 0.5 equiv. H2A. Ligand 1 (4.4 mg,
0.012 mmol) and phthalic acid (1 mg, 0.006 mmol) were disꢀ
solved in CD3CN (0.6 mL) under red light. 1H NMR, δ: 3.69—3.70
(m, 4 Н, 2 H(18), H(19)); 3.71—3.73 (m, 4 Н, 2 H(17), H(22));
3.84—3.86 (m, 4 Н, H(16), H(21)); 4.10—4.12 (m, 2 H, H(22));
4.13—4.14 (m, 2 H, H(15)); 6.91 (d, 1 Н, Н(13), J = 8.8 Hz);
7.16 (s, 1 Н, Н(10)); 7.06 (d, 1 Н, Н(7), J = 16.3 Hz); 7.16 (d, 1 H,
Н(14), J = 5.7 Hz); 7.60—7.59 (m, 2 Н, Н(4´), Н(5´)); 7.47
(d, 1 Н, Н(8), J = 16.3 Hz); 7.61 (d, 2 Н, Н(3), Н(5), J = 6.2 Hz);
8.23—8.22 (m, 2 Н, Н(3´), Н(6´)); 8.57 (d, 2 Н, Н(2), Н(6),
J = 6.2 Hz). 13C NMR, δ: 68.31, 68.40 (С(15), С(22)), 68.89,
69.02 (С(16), С(21)), 69.64, 69.78 (С(18), С(19)), 70.26, 70.41
(С(17), С(20)), 111.34 (С(10)), 113.05 (С(13)), 121.50 (С(3),
С(5)), 122.06 (С(14)), 122.47 (С(8)), 128.99 (С(9)), 130.85
(С(4´), С(5´)), 132.01 (С(3´), С(6´)), 134.15 (C(1´), C(2´)),
136.63 (С(7)), 145.60 (С(2), С(6)), 148.89 (С(12)), 149.78
(С(4)), 150.32 (С(11)), 167.57 (COOH).
Ligand 1 in the presence of 1 equiv. H2A. Ligand 1 (4.4 mg,
0.012 mmol) and phthalic acid (2 mg, 0.012 mmol) was disꢀ
solved in CD3CN (0.6 mL) under red light. 1H NMR, δ:
3.66—3.72 (m, 8 Н, H(17), H(18), H(19), H(20)); 3.82—3.84
(m, 4 Н, H(16), H(21)); 4.03—4.05 (m, 2 H, H(22)); 4.09—4.12
(m, 2 H, H(15)); 6.86 (d, 1 Н, Н(13), J = 8.8 Hz); 7.08 (d, 1 Н,
Н(10), J = 1.6 Hz); 7.01 (d, 1 Н, Н(7), J = 16.2 Hz); 7.13 (dd, 1 H,
Н(14), J = 8.3 Hz, J = 1.9 Hz); 7.54—7.59 (m, 2 Н, Н(4´),
Н(5´)); 7.47 (d, 1 Н, Н(8), J = 16.5 Hz); 7.65 (d, 2 Н, Н(3),
Н(5), J = 6.4 Hz); 8.06—8.09 (m, 2 Н, Н(3´), Н(6´)); 8.55 (d, 2 Н,
Н(2), Н(6), J = 6.4 Hz). 13C NMR, δ: 68.27, 68.34 (С(15),
С(22)), 68.86, 68.99 (С(16), С(21)), 69.58, 69.74 (С(18), С(19)),
70.20, 70.37 (С(17), С(20)), 111.32 (С(10)), 113.00 (С(13)),
121.70 (С(3), С(5)), 122.18 (С(14)), 122.26 (С(8)), 128.85
(С(9)), 130.92 (С(4´), С(5´)), 131.45 (С(3´), С(6´)), 133.77
(C(1´), C(2´)), 137.44 (С(7)), 144.70 (С(2), С(6)), 148.85
(С(12)), 150.43 (С(4)), 150.79 (С(11)), 169.26 (COOH).
Ligand 1 in the presence of 0.5 equiv. H2A and 0.5 equiv.
KClO4. Ligand 1 (4.4 mg, 0.012 mmol), phthalic acid (1 mg,