4528
B. D. Schwartz et al. / Tetrahedron Letters 52 (2011) 4526–4528
Table 1
Comparison of the 13C and 1H NMR data recorded for synthetically-derived narseronine and the natural product
13C NMR data (dC)
1H NMR data (dH)
Synthetic 1a
Narseronineb
Synthetic 1c
Narseronined
161.5
153.5
152.3
148.1
135.1
116.3
111.5
107.6
103.1
102.2
74.8
161.5
153.8
152.9
148.4
135.1
116.4
110.9
107.9
103.3
102.4
75.0
7.68, s, 1H
7.28, s, 1H
7.66, s, 1H
7.29, s, 1H
6.13, d, J = 1.2 Hz, 1H
6.11, d, J = 1.2 Hz, 1H
4.22, t, J = 6.0 Hz, 1H
3.91, d, J = 7.0 Hz, 1He
3.57, s, 3H
6.12, d, J = 1.2 Hz, 1H
6.10, d, J = 1.2 Hz, 1H
4.22, t, J = 6.1 Hz, 1H
3.94, d, J = 6.4 Hz, 1H
3.57, s, 3H
3.05, dt, J = 11.0 and 7.6 Hz, 1H
2.81, m, 1H
2.64, m, 1H
3.07, dt, J = 11.0 and 7.6 Hz, 1H
2.78, m, 1He
2.63, m, 1He
2.43, s, 3H
2.41, s, 3H
61.9
58.0
54.1
61.7
58.3
54.3
2.23–2.10, complex m, 2H
2.03, dt, J = 13.0 and 6.0 Hz, 1H
1.89, ddd, J = 13.0, 8.0 and 4.4 Hz, 1H
2.22–2.13, m, 2H
2.01, dt, J = 13.5 and 5.5 Hz, 1H
1.90, ddd, J = 12.6, 8.3 and 4.2 Hz, 1H
42.1
41.8
34.7
35.1
31.2
31.4
29.3
29.6
a
b
c
Data recorded in CDCl3 at 100 MHz.
Data obtained from spectrum provided by Professor Bastida and recorded in CDCl3 at 125 MHz.
Data recorded in CDCl3 at 400 MHz.
Data obtained from Ref. 1 and recorded in CDCl3 at 500 MHz.
The chemical shift of this resonance varied somewhat from run-to-run.
d
e
References and notes
1. Pigni, N. B.; Berkov, S.; Elamrani, A.; Benaissa, M.; Viladomat, F.; Codina, C.;
Bastida, J. Molecules 2010, 15, 7083.
2. Narseronine also appears to have been isolated from a sample of Narcissus
serotinus L. collected in Greece but its structure was incorrectly assigned. See:
Vrondeli, A.; Kefalas, P.; Kokkalou, E. Pharmazie 2005, 60, 559.
3. See, for example: (a) Evidente, A.; Andolfi, A.; Abou-Donia, A. H.; Touema, S. M.;
Hammoda, H. M.; Shawky, E.; Motta, A. Phytochemistry 2004, 65, 2113; (b) Liu,
J.; Hu, W.-X.; He, L.-F.; Ye, M.; Li, Y. FEBS Lett. 2004, 578, 245; (c) Liu, X.-s.; Jiang,
J.; Jiao, X.-y.; Wu, Y.-e.; Lin, J.-h.; Cai, Y.-m. Cancer Lett. 2009, 274, 16; (d)
McNulty, J.; Nair, J. J.; Bastida, J.; Pandey, S.; Griffin, C. Phytochemistry 2009, 70,
913; (e) Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.; Cimmino, A.; Le
Calvé, B.; Wauthoz, N.; Mégalizzi, V.; Bruyère, C.; Dubois, J.; Mathieu, V.;
Kornienko, A.; Kiss, R.; Evidente, A. J. Med. Chem. 2009, 52, 6244; (f) Evidente,
A.; Kornienko, A. Phytochem. Rev. 2009, 8, 449; (g) Van Goietsenoven, G.;
Andolfi, A.; Lallemand, B.; Cimmino, A.; Lamoral-Theys, D.; Gras, T.; Abou-
Donia, A.; Dubois, J.; Lefranc, F.; Mathieu, V.; Kornienko, A.; Kiss, R.; Evidente, A.
J. Nat. Prod. 2010, 73, 1223; (h) Hayden, R. E.; Pratt, G.; Drayson, M. T.; Bunce, C.
M. Haematologica 2010, 95, 1889; (i) Feng, T.; Wang, Y.-Y.; Su, J.; Li, Y.;
Cai, X.-H.; Luo, X.-D. Helv. Chim. Acta 2011, 94, 178.
4. Schwartz, B. D.; Jones, M. T.; Banwell, M. G.; Cade, I. A. Org. Lett. 2010, 12, 5210.
5. For reviews on methods for generating compounds such as 2 by microbial
dihydroxylation of the corresponding aromatics, as well as the synthetic
applications of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D.
T. Aldrichim. Acta 1999, 32, 35; (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.;
Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl.
Chem. 2003, 75, 223; (c) Johnson, R. A. Org. React. 2004, 63, 117; (d) Hudlicky,
T.; Reed, J. W. Synlett 2009, 685; (e) Banwell, M. G.; Lehmann, A. L.; Menon, R.
S.; Willis, A. C. Pure Appl. Chem. 2011, 83, 411.
Figure 1. ORTEP derived from the single-crystal X-ray analysis of compound 1.
Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are
shown as spheres of arbitrary radius.
6. Hudlicky, T.; Price, J. D.; Rulin, F.; Tsunoda, T. J. Am. Chem. Soc. 1990, 112, 9439.
7. Jones, M. T.; Schwartz, B. D.; Willis, A. C.; Banwell, M. G. Org. Lett. 2009, 11,
3506.
Acknowledgements
8. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
9. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
10. For related reduction processes employing Raney-cobalt see: (a) Janey, J. M.;
Orella, C. J.; Njolito, E.; Baxter, J. M.; Rosen, J. D.; Palucki, M.; Sidler, R. R.; Li, W.;
Kowal, J. J.; Davies, I. W. J. Org. Chem. 2008, 73, 3212; (b) Ref. 7; (c) Ref. 4.
11. Purdie, T.; Irvine, J. C. J. Chem. Soc., Trans. 1903, 83, 1021.
12. For related conversions see: (a) Jadhav, S. B.; Ghosh, U. Tetrahedron Lett. 2007,
48, 2485; (b) Ragan, J. A.; Ide, N. D.; Cai, W.; Cawley, J. J.; Colon-Cruz, R.; Kumar,
R.; Peng, Z.; Vanderplas, B. C. Org. Process Res. Dev. 2010, 14, 1402.
13. Kunz, H.; Unverzagt, C. Angew. Chem., Int. Ed. 1984, 23, 436.
14. X-ray crystal data for compound 1 can be found in the Supplementary data.
Crystallographic data (excluding structure factors) for compound 1 have been
deposited with the Cambridge Crystallographic Data Centre (CCDC no.
822115). Copies of the data can be obtained, free of charge, on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or
e-mail: deposit@ccdc.cam.ac.uk).
We thank the Institute of Advanced Studies and the Australian
Research Council for financial support. Professor Jaume Bastida
(University of Barcelona) is thanked for providing copies of the
1H and 13C NMR spectra recorded on naturally-derived
narseronine.
Supplementary data
Supplementary data (experimental procedures and product
characterization for compounds 13, 13 O-methyl ether, 14, 15,
and 1 as well as the X-ray crystallographic data for compound 1)
associated with this article can be found, in the online version, at
15. The specific rotation recorded for synthetically-derived material was À25.4
(c 1.6, CDCl3).