Inorganic Chemistry
COMMUNICATION
tetrazolyl groups would have high nitrogen contents, should be
highly endothermic, and would thus be relevant to ongoing efforts
to construct energetic metal salts for a variety of applications.15
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic procedures and ana-
b
lytical and spectroscopic data for 1ꢀ7 and X-ray crystallographic
data for 1ꢀ7 in CIF format. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: chw@chem.wayne.edu.
’ ACKNOWLEDGMENT
We are grateful to the Office of Naval Research (Grant
N00014-07-1-0105) for generous support of this work.
’ REFERENCES
(1) Trofimenko, S. Scorpionates: The Coordination Chemistry of
Polypyrazolylborate Ligands; Imperial College Press: London, 1999.
(2) Mu~noz-Hernꢀandez, M.-A.; Montiel-Palma, V. Inorg. Chim. Acta
2009, 362, 4328–4339.
(3) Breakell, K. R.; Patmore, D. J.; Storr, A. J. Chem. Soc., Dalton
Trans. 1975, 749–754.
(4) (a) Cortes-Llamas, S. A.; Velꢀazquez-Carmona, M.-A.; Mu~noz-
Hernꢀandez,M.-A.Inorg. Chem. Commun. 2005,8,155–158. (b) Cortes-Llamas,
S. A.; Mu~noz-Hernꢀandez, M.-A. Organometallics 2007, 26, 6844–6851.
(5) Leadingreferences:(a)Onyiriuka, E. C.;Rettig, S. J.;Storr, A.Can. J.
Chem. 1986, 64, 321–327. (b) Banta, G. A.; Louie, B. M.; Onyiriuka, E.;
Rettig, S. J.; Storr, A. Can. J. Chem. 1986, 64, 373–386. (c) Louie, B. M.;
Storr, A. Can. J. Chem. 1984, 62, 1344–1348. (d) Louie, B. M.; Rettig, S. J.;
Storr, A.; Trotter, J. Can. J. Chem. 1984, 62, 1057–1067.
(6) (a) Saly, M. J.; Munnik, F.; Winter, C. H. J. Mater. Chem. 2010,
20, 9995–10000. (b) Saly, M. J.; Munnik, F.; Baird, R. J.; Winter, C. H.
Chem. Mater. 2009, 21, 3742–3744. (c) Saly, M. J.; Munnik, F.; Winter,
C. H. Chem. Vap. Deposition 2011, 17, 128–134. (d) Saly, M. J.; Heeg,
M. J.; Winter, C. H. Inorg. Chem. 2009, 48, 5303–5312.
(7) Lu, D.; Winter, C. H. Inorg. Chem. 2010, 49, 5795–5797.
(8) Details of the synthetic work and characterization of the new
complexes are contained in the Supporting Information.
(9) Saly, M. J.; Li, J.; Heeg, M. H.; Winter, C. H. Inorg. Chem. 2011,
50, 7385–7387.
(10) (a) Looney, A.; Han, R.; Gorrell, I. B.; Cornebise, M.; Yoon, K.;
Parkin, G.; Rheingold, A. L. Organometallics 1995, 14, 274–288. (b)
Klaui, W.; Schilde, U.; Schmidt, M. Inorg. Chem. 1997, 36, 1598–1601.
(11) (a) Silva, M.; Domingos, A.; Pires de Matos, A.; Marques, N.;
Trofimenko, S. J. Chem. Soc., Dalton Trans. 2000, 4628–4634. (b)
Trofimenko, S.; Rheingold, A. L.; Liable Sands, L. M. Inorg. Chem.
2002, 41, 1889–1896.
Figure 1. Perspective views of 2, 5, and 6 with selected bond lengths
(Å) and angles (deg): (top) 2, AlꢀN1 1.884(1), AlꢀN3 1.899(1),
AlꢀN5 1.893(1), LiꢀN2 2.072(2), LiꢀN4 2.061(2), LiꢀN6 2.137(3),
LiꢀO1 1.967(2), AlꢀH 1.46(1); N1ꢀAlꢀN3 110.58(5), N1ꢀAlꢀN5
100.49(5), N3ꢀAlꢀN5 104.53(5), N2ꢀLiꢀN4 98.8(1), N2ꢀLiꢀN6
101.7(1), N4ꢀLiꢀN6 95.0(1); (middle) 5, AlꢀN10 1.897(8), AlꢀN20
1.892(9), AlꢀN3 1.907(9), ZnꢀN1 2.112(4), ZnꢀN2 2.042(4),
ZnꢀN30 2.061(4); N10ꢀAlꢀN20 101.7(3), N10ꢀAlꢀN3 106.6(4),
N20ꢀAlꢀN3 109.0(4), N1ꢀZnꢀN2 90.1(1), N1ꢀZnꢀN30 93.9(1),
N2ꢀZnꢀN30 97.8(1); (bottom) 6, Mg1ꢀBr1 2.478(1), Mg2ꢀBr2
2.482(1), Mg1ꢀN1 2.098(2), Mg1ꢀN3 2.108(2), Mg2ꢀN2 2.104(2),
Mg2ꢀN4 2.105(2), Mg1ꢀO1 2.268(2), Mg1ꢀO2 2.050(2), Mg2ꢀO1
2.285(2), Mg2ꢀO3 2.052(2).
exhibited vigorous gas evolution upon the treatment with 2 and
concomitant formation of metallic precipitates. This behavior is
consistent with hydrogen transfer from aluminum to metal,
followed by H2 reductive elimination and the formation of metal
powders, and is similar to Storr’s observations upon the at-
tempted syꢀnthesis of nickel and copper complexes containing
GaH2(pz)2 ligands.3 Pathways that lead to hydride and pyr-
azolate transfer with 2 presumably also afford the neutral species
Al(Ph2pz)3 and [AlH(Ph2pz)2]n, but examples of these com-
plexes have not been crystallized in pure form so far. However,
Al(tBu2pz)312 and Al hydride pyrazolates13 have been reported.
The present work also implies that analogues of 1ꢀ4 containing
1,2,4-triazolyl and tetrazolyl groups should be easily prepared by
protonolysis routes between LiAlH4 and the hydrogen-substi-
tuted heterocycles because some of the corresponding B ligands
are known.1,7,14 Al-based ligands containing 1,2,4-triazolyl and
(12) Bakker, J. M.; Barbour, L. J.; Deacon, G. B.; Junk, P. C.; Lloyd,
G. O.; Steed, J. W. J. Organomet. Chem. 2010, 695, 2720–2725.
(13) (a) Uhl, W.; Vogelpohl, A. Z. Naturforsch. 2010, 65b, 687–694.
(b) Yu, Z.; Knox, J. E.; Korolev, A. V.; Heeg, M. J.; Schlegel, H. B.; Winter,
C. H. Eur. J. Inorg. Chem. 2005, 330ꢀ337 and references cited therein.
(14) (a) Janiak, C.; Scharmann, T. G.; Gunther, W.; Girgsdies, F.;
Hemling, H.; Hinrichs, W.; Lentz, D. Chem.—Eur. J. 1995, 1, 637–644 and
references contained therein. (b) Groshens, T. J. J. Coord. Chem. 2010,
63, 1882–1892.
(15) (a) Steinhauser, G.; Klapotke, T. M. Angew. Chem., Int. Ed.
2008, 47, 3330–3347. (b) Singh, R. P.; Ga, H.; Meshri, D. T.; Shreeve,
J. M. High Energy Density Mater. 2007, 125, 35–83.
9212
dx.doi.org/10.1021/ic201541c |Inorg. Chem. 2011, 50, 9210–9212