Table 2 Synthesis of hexahydrobenzo[b][1,8]naphthyridine derivatives
via SDS-promoted reaction of dihydropyridines
High Pressures, ed. K. Matsumoto and R. M. Acheson, Wiley, New
York, 1991, p. 423; (d) Y. Ogo, Petrotechnology, 1988, 11, 307.
2 (a) M. A. P. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol and P.
Machado, Chem. Rev., 2009, 109, 4140–4182; (b) Y. Gu, b Rodolphe
De Sousa, G. Frapper, C. Bachmann, J. Barraulta and F. Jeroˆme,
Green Chem., 2009, 11, 1968–1972; (c) B. C. Ranu, S. S. Dey and A.
Hajra, Green Chem., 2003, 5, 44–46; (d) G. Choudhary and R. K.
Peddinti, Green Chem., 2011, 13, 276–282; (e) S. L. Jain, S. Singhal
and B. Sain, Green Chem., 2007, 9, 740–741; (f) S. Iliescu, G. Ilia,
N. Plesu, A. Popa and A. Pascariu, Green Chem., 2006, 8, 727–730;
(g) J. Zhang, Z. Cui, F. Wang, Y. Wang, Z. Miao and R. Chen, Green
Chem., 2007, 9, 1341–1345; (h) L. D. S. Yadav, S. Singh and V. K.
Rai, Green Chem., 2009, 11, 878–882; (i) S. Yan, Y. Chen, L. Liu, N.
He and J. Lin, Green Chem., 2010, 12, 2043–2052; (j) L. Shen, S. Cao,
J. Wu, J. Zhang, H. Li, N. Liu and X. Qian, Green Chem., 2009, 11,
1414–1420; (k) V. Polshettiwar and R. S. Varma, Tetrahedron Lett.,
2008, 49, 879–883; (l) K. Nagaiah, D. Sreenu, R. Srinivasa Rao, G.
Vashishta and J. S. Yadav, Tetrahedron Lett., 2006, 47, 4409–4413;
(m) S. Yan, Y. Chen, L. Liu, N. He and J. Lin, Green Chem., 2010,
12, 2043–2052.
Entry Ar
Ar ¢
Product Yield (%)
7a
65, 43a, 48b, 32c
1
2
3
4
5
3,4-(CH3O)2C6H3
p-ClC6H4
p-C2H5OC6H4 7b
p-BrC6H4
p-BrC6H4
p-CH3OC6H4
52
68
79
61
p-ClC6H4
7c
7d
7e
2,4-Cl2C6H4
p-(C6H5CH2O)C6H4 p-BrC6H4
a Sodium lauryl sulfate (30 mol%) used as a catalyst. b Triton X-100 used
as a catalyst. c Dodecylsulfonic acid (30 mol%) used as a catalyst.
Conclusions
In conclusion, a domino multicomponent reaction for the
synthesis of dihydropyridines has been developed using solvent-
and catalyst-free conditions. The features of this procedure
are mild conditions, high yields, operational simplicity, and
the environmental friendliness. In addition, the synthesized
dihydropyridines could be efficiently converted into polyhydron-
aphthyridines in water.
3 (a) D. C. Rideout and R. Breslow, J. Am. Chem. Soc., 1980, 102,
7816–7817; (b) R. Breslow, Acc. Chem. Res., 1991, 24, 159–164; (c) R.
Breslow, Acc. Chem. Res., 2004, 37, 471–478; (d) A. Chanda and V. V.
Fokin, Chem. Rev., 2009, 109, 725–748; (e) C. J. Li, Chem. Rev., 2005,
105, 3095–3165; (f) C. J. Li, Chem. Rev., 1993, 93, 2023–2035; (g) M.
C. Pirrung, Chem.–Eur. J., 2006, 12, 1312–1317; (h) U. M. Lindstro¨m,
Chem. Rev., 2002, 102, 2751–2771; (i) G. Molteni, Heterocycles, 2006,
68, 2177–2202; (j) K. Kumaravel and G. Vasuki, Green Chem., 2009,
11, 1945–1947; (k) Q. Y. Zhang, B. Liu, W. Chen, Q. Wu and X. Lin,
Green Chem., 2008, 10, 972–977; (l) J. Yu, L. Wang, J. Liu, F. Guo,
Y. Liu and N. Jiao, Green Chem., 2010, 12, 216–219.
Experimental
4 For a recent monograph, see: Multicomponent Reactions, ed. J. Zhu
and H. Bienayme´, Wiley-VCH, Weinheim, Germany, 2005. For some
recent reviews on MCRs, see: A. Do¨mling, Chem. Rev., 2006, 106, 17;
J. Zhu, Eur. J. Org. Chem., 2003, 1133; R. V. Orru and M. De Greef,
Synthesis, 2003, 1471; D. J. Ramon and M. Yus, Angew. Chem., Int.
Ed., 2005, 44, 1602.
5 (a) A. Pinto, L. Neuville and J. Zhu, Angew. Chem., Int. Ed., 2007,
46, 3291, and references cited therein; (b) D. Enders, C. Grondal;
(c) M. R. M. Huettl, Angew. Chem., Int. Ed., 2007, 46, 1570; (d) L. F.
Tietze and N. Rackelmann, Pure Appl. Chem., 2004, 76, 1967; (e) L.
F. Tietze, Chem. Rev., 1996, 96, 115; (f) P. Arya, R. Joseph and D. T.
H. Chou, Chem. Biol., 2002, 9, 145.
General procedure for synthesis of compounds 5a–v and 6a–e
A mixture of the appropriate aldehyde (1 mmol), aniline
(1 mmol), DEAD (1 mmol), and malanonitrile (1 mmol) was
ground in a mortar and pestle at room temperature. After two
minutes, a syrupy solution was observed, which solidified upon
completion of the reaction. Solid products were formed with
high purity, and all the compounds were recrystallized from
ethanol.
6 P. Arya, D. T. H. Chou and M.-G. Baek, Angew. Chem., Int. Ed.,
2001, 40, 339.
7 S. L. Schreiber, Science, 2000, 287, 1964.
General procedure for synthesis of compounds 7a–e
8 (a) A. Hilgeroth and H. Lilie, Eur. J. Med. Chem., 2003, 38, 495;
(b) C. Avendano and J. C. Menendez, Curr. Med. Chem., 2002, 9,
159; (c) C. Avendano and J. C. Menendez, Med. Chem. Rev., 2004,
1, 419; (d) A. Boumendjel, H. Baubichon-Cortay, D. Trompier, T.
Perrotton and A. Di Pietro, Med. Res. Rev., 2005, 25, 453; (e) I. O.
Donkor, X. Zhou, J. Schmidt, K. C. Agrawal and V. Kishore, Bioorg.
Med. Chem., 1998, 6, 563; (f) K. S. Atwal, B. N. Swanson, S. E.
Unger, D. M. Floyd, S. Mereland, A. Hedberg and B. C. O’Reilly, J.
Med. Chem., 1991, 34, 806.
9 (a) G. C. Rovnyak, S. D. Kimball, B. Beyer, G. Cucinotta, J. D.
Dimarco, J. Gougoutas, A. Hedberg, M. Malley, J. P. MaCarthy, R.
Zhang and S. Mereland, J. Med. Chem., 1995, 38, 119; (b) C. O.
Kappe, W. M. F. Fabian and M. A. Semones, Tetrahedron, 1997, 53,
An oven-dried microwave vial was charged with dihydropyridine
5 (1 mmol), cyclohexanone (3 mmol) and SDS (30 mol% solution
in water, 3 ml), and irradiated in a microwave (power input
140 W) at 150 ◦C with stirring for 15 min. After completion of
the reaction, the mixture was diluted with 5 ml ethyl acetate and
washed with saturated aqueous NH4Cl solution. The aqueous
layer was extracted with ether, and the combined organic layers
washed with brine and dried over Na2SO4. The solvent was
evaporated to yield a crude residue, which was purified by silica
gel column chromatography using EtOAc–hexane to give the
pure product 7.
2803; (c) K. Aouam and A. Berdeaux, Th
e´rapie, 2003, 58, 333; (d) A.
Hilgeroth, Mini-Rev. Med. Chem. 2002, 2, 235.
10 P. Valenti, A. Rampa, A. Bisi, V. Andrisano, V. Cavrinil, L. Fin, A.
Buriani and P. Giusti, Bioorg. Med. Chem. Lett., 1997, 7, 2599–2602.
11 J. Sun, E. Y. Xia, Q. Wu and C. G. Yan, Org. Lett., 2010, 12, 3678–
3681.
Acknowledgements
S.S. is thankful to CSIR New Delhi for financial support.
The authors also acknowledge SAIF-CDRI for providing
the spectral and analytical data. CDRI communication No.
8078.
12 (a) A. Kumar, S. Sharma, R. A. Maurya and J. Sarkar, J. Comb.
Chem., 2010, 12, 20–24; (b) A. Kumar and R. A. Maurya, Tetrahe-
dron, 2008, 64, 3477; (c) A. Kumar and R. A. Maurya, Tetrahedron
Lett., 2007, 48, 4569; (d) A. Kumar and R. A. Maurya, Tetrahedron
Lett., 2007, 48, 3887; (e) A. Kumar, S. Sharma and R. A. Maurya,
Tetrahedron Lett., 2009, 50, 5937–5940; (f) A. Kumar, M. K. Gupta
and M. Kumar, Tetrahedron Lett., 2010, 51, 1582; (g) A. Kumar,
S. Srivastava, G. Gupta, V. Chaturvedi, S. Sinha and R. Srivastava,
ACS Comb. Sci., 2010, 13, 65–71; (h) A. Kumar, G. Gupta and S.
Srivastava, J. Comb. Chem., 2010, 12, 458; (i) A. Kumar, S. Sharma,
References
1 (a) D. C. Dittmer, Chem. Ind., 1997, 779; (b) K. Tanaka and F. Toda,
Chem. Rev., 2000, 100, 1025; (c) K. Hara, in Organic Synthesis at
This journal is
The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 2017–2020 | 2019
©