4514
M. E. Jung, H. V. Chu / Tetrahedron Letters 52 (2011) 4512–4514
In conclusion, we have successfully synthesized three novel car-
O
diac glycoside analogues containing only the BCD tricyclic system,
which was derived from a very efficient inverse-electron-demand
Diels–Alder reaction. The biological activity of the analogues will
be reported in due course. We also plan to utilize this synthetic
strategy to prepare other cardiac glycoside analogues.
O
CCl3
Me
22
O
O
NH
ZnBr2
4 Å MS
H
Me
AcO
Me
O
O
CH2Cl2
23 °C
90%
OTES
OAc
OAc
Acknowledgments
12
Me
O
AcO
O
HVC gratefully acknowledges the National Institutes of Health
for support via Grant No. GM08496.
AcO
23
OAc
O
Me
O
Supplementary data
H
Me
O
1) HF-pyr
CH3CN
OTES
Supplementary data associated with this article can be found, in
23 °C/92%
2) K2CO3
aq MeOH
23 °C/49%
Me
HO
O
References and notes
HO
OH
24
1. For reviews, see: (a) Mehanna, A. S. In Foye’s Principles of Medicinal Chemistry;
Lemke, T. L., A Williams, D., Eds., 6th ed.; Lippincott: Philadelphia, 2008; pp
698–721; (b) Somberg J, G. B.; Tepper, D. J. Clin. Pharmacol. 1985, 484–489; (c)
Haustein, K.-O. Pharmacol. Ther. 1982, 18, 1–89.
Scheme 5.
2. (a) Hauptman, P. J.; Kelly, R. A. Circulation 1999, 99, 1265–1270; (b)
Gheorghiade, M.; Adams, K. F.; Colucci, W. S. Circulation 2004, 109, 2959–2964.
3. Suenaga, K.; Kigoshi, H.; Yamada, K. Tetrahedron Lett. 1996, 37, 5151–5154.
4. (a) Langer, G. A. J. Mol. Cell. Cardiol. 1970, 1, 203–207; (b) Erdmann, E.; Philipp,
G.; Scholz, H. Biochem. Pharmacol. 1980, 29, 3219–3229.
5. (a) Haux, J. Med. Hypotheses 1999, 53, 543–548; (b) Haux, J.; Klepp, O.; Spigset,
O.; Tretli, S. B. M. C. Cancer 2001, 1, 11; (c) Mijatovic, T.; Van Quaquebeke, E.;
Delest, B.; Debeir, O.; Darro, F.; Kiss, R. Biochim. Biophys. Acta, Rev. Cancer 2007,
1776, 32.
6. (a) Arnaud, M. Compt. Rend. Acad. 1888, 107(1011), 1162; (b) Jacobs, W. A.;
Bigelow, N. M. J. Biol. Chem. 1932, 96, 647; (c) Tamm, C.; Volpp, G.;
Baumgartner, G. Helv. Chim. Acta 1957, 40, 1469; (d) Volpp, G.; Tamm, C.
Helv. Chim. Acta 1957, 40, 1860; (e) McIntyre, D. D.; Germann, M. W.; Vogel, H. J.
Can. J. Chem. 1990, 68, 1263.
7. (a) Nawa, H. Proc. Japan Acad. 1951, 27, 436–440; (b) Kikuchi, K.; Chen, K. K. J.
Pharmacol. Exp. Ther. 1964, 146, 365–368; (c) Umebayashi, C.; Yamamoto, N.;
Nakao, H.; Toi, Y.; Chikahisa-Muramatsu, L.; Kanemaru, K.; Masuda, T.; Oyama,
Y. Biol. Pharm. Bull. 2003, 26, 627–630; (d) Masuda, T.; Oyama, Y.; Yamamoto,
N.; Umebayashi, C.; Nakao, H.; Toi, Y.; Takeda, Y.; Nakamoto, K.; Kuninaga, H.;
Nishizato, Y.; Nonaka, A. Biosci. Biotechnol., Biochem. 2003, 67, 1401–1404.
8. (a) Jung, M. E.; Davidov, P. Angew. Chem., Int. Ed. 2002, 41, 4125–4128; (b) Jung,
M. E.; Piizzi, G. Org. Lett. 2003, 5, 137–140; (c) Jung, M. E.; Piizzi, G. J. Org. Chem.
2003, 68, 2572–8252; (d) Jung, M. E.; Chu, H. V. Org. Lett. 2008, 10, 3647–3649;
(e) Jung, M. E.; Yoo, D. Org. Lett. 2011, 13, 2698–2701.
dized to the enedione which then undergoes hydroxylation (pre-
sumably via the enol) to give the -hydroxyketone 17. Further oxi-
a
dation with DMP, or better with added lead tetraacetate, afforded
the enedione 18 in 48% yield. The installation of the C10 methyl
group was achieved through a two-step sequence involving the
1,3-dipolar cycloaddition of diazomethane to give in 87% yield
the pyrazoline, followed by extrusion of nitrogen to afford the
methyl enedione 19 in 98% yield.15 Chemoselective reduction of
the less hindered ketone using lithium tri(t-butoxy)aluminum hy-
dride furnished in 77% yield the equatorial b-alcohol as a single
diastereomer, which was then protected as the silyl ether 20 in
97% yield. The terminal vinyl group was then converted into the
butenolide ring by the same sequence of steps described earlier.
Thus osmium tetroxide-NMO dihydroxylation gave the diol, which
was selectively protected to give the primary acetate. Oxidation of
the secondary alcohol with TPAP/NMO16 and deprotection of the
acetate group furnished the
a-hydroxyketone 21. As before, cou-
pling of this alcohol with diethylphosphonoacetic acid using Yam-
aguchi’s reagent furnished the phosphonate ester and
intramolecular Horner-Wadsworth-Emmons reaction gave the de-
sired butenolide. Finally, selective deprotection of the less hin-
dered silyl ether gave the desired alcohol 22 in 99% yield.
9. Parsons, P. J.; Chaddick, S. Tetrahedron 1994, 50, 13523–13532.
10. Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1980, 102, 5253–5261.
11. Smith, A. B., III; Razler, T. M.; Ciavarri, J. P.; Hirose, T.; Ishikawa, T. Org. Lett.
2005, 7, 4399–4402.
12. (a) Larson, D. P.; Heathcock, C. H. J. Org. Chem. 1997, 62, 8406–8418; (b) Van
Steijn, A. M. P.; Kamerling, J. P.; Vliegenthart, J. F. G. Carbohydr. Res. 1991, 211,
261–277.
Attachment of 2.3,4-tri-O-acetyl-a-L-rhamnopyranosyl trichlo-
roacetimidate (12)12 to the allylic alcohol 22 was again successful
using the mild Lewis acid, ZnBr2, to give the desired coupled prod-
uct 23 in 90% yield13 (Scheme 5). Deprotection of the tertiary tri-
ethylsilyl ether with HF-pyridine in acetonitrile gave the tertiary
alcohol in 92% yield and final deprotection of the acetates provided
the cardiac glycoside analogue 24 again as a mixture of two diaste-
reomers due to the coupling of the optically pure sugar with the
racemic alcohol.
13. Urban, F. J.; Moore, B. S.; Breitenbach, R. Tetrahedron Lett. 1990, 31, 4421–4424.
14. Jung, M. E.; Ho, D. G. Org. Lett. 2007, 9, 375–378.
15. (a) Nemoto, H.; Matsuhashi, N.; Imaizumi, M.; Nagai, M.; Fukumoto, K. J. Org.
Chem. 1990, 55, 5625–5631; (b) Nemoto, H.; Nagai, M.; Moizumi, M.; Kohzuki,
K.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1989, 1639–1645;
(c) Nemoto, H.; Nagai, M.; Moizumi, M.; Kohzuki, K.; Fukumoto, K.; Kametani,
T. Tetrahedron Lett. 1988, 29, 4959–4962.
16. Ley, S.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639–666.