ORGANIC
LETTERS
2011
Vol. 13, No. 19
5156–5159
Synthesis of 6-Substituted-4-Hydroxy-
2-pyridinones via Intramolecular Ketene
Trapping of Functionalized
Enamine-Dioxinones
Bhavesh H. Patel,† Andrew M. Mason,‡ and Anthony G. M. Barrett*,†
Department of Chemistry, Imperial College, London SW7 2AZ, U.K., and
GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, Herts SG1 2NY, U.K.
Received July 27, 2011
ABSTRACT
The synthesis of various 6-substituted-4-hydroxy-2-pyridinones is reported. The functionalized keto-dioxinones were constructed via a
diethylzinc mediated crossed Claisen condensation reaction and subsequent enamine formation, thermolysis, and cyclizationÀaromatization
providing the pyridinone unit.
The pyridinone structural motif is present in a range of
natural products1 and biologically active molecules,2 with
6-substituted-4-hydroxy-2-pyridinones being key inter-
mediates in their synthesis. Notably these heterocycles
are used as templates in drug discovery,2,3 used in the total
synthesis of natural products including novel human chy-
mase inhibitors produced by Penicillium sp.,4 and em-
ployed in the preparation of related heteroaromatics.5
The synthesis of 4-hydroxy-6-methyl-2-pyridinone was
first reported by Collie via treatment of triacetic lactone (4-
hydroxy-6-methyl-2-pyrone) with ammonia.6 Soon after,
the same pyridinone was synthesized using a condensation
reaction between a malonic ester and a β-aminocrotonate
followed by decarboxylation.7 Since then, several other
routes with varying yields have been reported for the
construction of 6-substituted-4-hydroxy-2-pyridinones.
These include reactions of functionalized enamines with
carbon suboxide (C3O2),8 condensation of ethyl acetoace-
tate with benzonitrile followed by cyclization,9 acid-
mediated rearrangement of 2-amino-4-pyrones,10 and re-
action of Schiff’s bases with diphenyl malonate and sub-
sequent retro-ene reaction.11
Following on from our preceding work utilizing
dioxinones,12 we envisaged a versatile route toward 6-sub-
stituted-4-hydroxy-2-pyridinones 1 via cyclization of
enamine-keto-ketenes 2 (Scheme 1). Such reactive inter-
mediates2 should be available from enamine-dioxinones3,
which could be prepared from functionalized keto-dioxinones
† Imperial College.
‡ GlaxoSmithKline R&D.
(1) Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168.
(2) Groutas, W. C.; Stanga, M. A.; Brubaker, M. J.; Huang, T. L.;
Moi, M. K.; Carroll, R. T. J. Med. Chem. 1985, 28, 1106.
(3) Demuner, A. J.; Valente, V. M. M.; Barbosa, L. C. A.; Rathi,
A. H.; Donohoe, T. J.; Thompson, A. L. Molecules 2009, 14, 4973.
(4) (a) Shimatani, T.; Hosotani, N.; Ohnishi, M.; Kumagai, K.; Saji,
I. J. Antibiot. 2006, 59, 29. (b) Vegi, S. R.; Boovanahalli, S. K.; Sharma,
A. P.; Mukkanti, K. Tetrahedron Lett. 2008, 49, 6297.
(5) (a) Findlay, J. A.; Krepinsky, J.; Shum, F. Y.; Tam, W. H. J. Can.
J. Chem. 1976, 54, 270. (b) Hajdok, S.; Conrad, J.; Leutbecher, H.;
Strobel, S.; Schleid, T.; Beifuss, U. J. Org. Chem. 2009, 74, 7230.
(6) (a) Collie, J. N. J. Chem. Soc. 1891, 59, 607. For other examples
(7) Knovenagel, E.; Fries, A. Chem. Ber. 1898, 31, 767.
(8) Ziegler, E.; Hradetzky, F. Monatsh. Chem. 1964, 95, 1247.
(9) Huckin, S. N.; Weiler, L. Can. J. Chem. 1974, 52, 1343.
(10) Kato, T.; Kubota, Y.; Tanaka, M.; Takahashi, H.; Chiba, T.
Heterocycles 1978, 9, 841.
(11) Ito, K.; Miyajima, S. J. Heterocyclic Chem. 1992, 29, 1037.
(12) Patel, B. H.; Heath, S. F .A.; Mason, A. M.; Barrett, A. G. M.
Tetrahedron Lett. 2011, 52, 2258.
€
using a similar procedure, see:(b) Wislicenus, W.; Schollkopf, K.
J. Prakt. Chem. 1917, 95, 269. (c) Kato, T.; Yamamoto, Y.; Takeda,
S. Chem. Pharm. Bull. 1973, 21, 1047. (d) Giddens, A. C.; Nielsen, L.;
Boshoff, H. I.; Tasdemir, D.; Perozzo, R.; Kaiser, M.; Wang, F.;
Sacchettini, J. C.; Copp, B. R. Tetrahedron 2008, 64, 1242.
r
10.1021/ol202028t
Published on Web 08/31/2011
2011 American Chemical Society