Inorganic Chemistry
ARTICLE
’ ACKNOWLEDGMENT
We thank the U.S. Department of Energy Office of Basic
Sciences for their support of this work (Grant 86-ER-13569).
The Center for Enabling New Technologies through Catalysis
(CENTC) Elemental Analysis Facility is also acknowledged
for use of its analytical facility (CHE-0650456). This paper is
dedicated to Prof. Christian Bruneau on the occasion of his 60th
birthday.
’ REFERENCES
(1) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976,
1020.
(2) (a) Jensen, C. M. Chem. Commun. 1999, 2443. (b) Rybtchinski,
B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. (c) Albrecht, M.;
van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750. (d) Vigalok, A.;
Milstein, D. Acc. Chem. Res. 2001, 34, 798. (e) Milstein, D. Pure Appl.
Chem. 2003, 75, 445. (f) Singleton, J. T. Tetrahedron 2003, 59, 1837.
(g) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.
(h) Benito-Garagorri, D.; Kirchner, K. Acc. Chem. Res. 2008, 41, 201.
(i) Selander, N.; Szabꢀo, K. J. Chem. Rev. 2011, 111, 2048. (j) Choi, J.;
MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011,
111, 1761. (k) Liang, L.-C. Coord. Chem. Rev. 2006, 250, 1152.
(l) Whited, M. T.; Grubbs, R. H. Acc. Chem. Res. 2009, 42, 1607.
(m) van der Vlugt, J. I.; Reek, J. N. H. Ang. Chem. Int. Ed. 2009, 48, 8832.
(n) van der Vlugt, J. I.; Pidko, E. A.; Vogt, D.; Lutz, M.; Spek, A. L. Inorg.
Chem. 2009, 48, 7513. (o) van der Vlugt, J. I. Ang. Chem. Int. Ed. 2010,
49, 252. (p) Askevold, B.; Khusniyarov, M. M.; Herdtweck, E.; Meyer,
K.; Schneider, S. Angew. Chem., Int. Ed. 2010, 49, 7566. (q) Leonard,
N. G.; Williard, P. G.; Bernskoetter, W. H. Dalton Trans. 2011, 40, 4300.
(r) Jurca, T.; Gorelsky, S. I.; Korobkov, I.; Richeson, D. S. Dalton Trans.
2011, 40, 4394. (s) Lindner, R.; van der Bosch, B.; Lutz, M.; Reek,
J. N. H.; van der Vlugt, J. I. Organometallics 2011, 30, 499.(t) Morales-
Morales, D. , Jensen, C., Eds.; The Chemistry of Pincer Compounds;
Elsevier: Amsterdam, The Netherlands, 2007.
Figure 10. X-ray structure of (PONOP)NiCl. Selected distances:
Ni1ÀCl1, 2.3469(18) Å; Ni1ÀN1, 2.042(3) Å; N1ÀC1, 1.345(5) Å;
C1ÀC2, 1.374(5) Å; C2ÀC3, 1.376(5) Å; C3ÀC4, 1.385(5) Å;
C4ÀC5, 1.369(5) Å; C5ÀN1, 1.349(5) Å.
7.2 Hz, 36H). 2H NMR (400 MHz, C6H6): δ 3.39 (m). 31P{1H} NMR
(162 MHz, C6D6): δ 165.1 (s).
When the reaction was carried out using LiAlD4 or NaBD4 under the
samereaction conditions complex 4a-d1 was not observed. No phosphorus
signal was observed by 31P NMR spectroscopy. A crystal was grown by
slow evaporation from hexane solution, and formation of the paramagnetic
complex (PONOP)NiICl was confirmed (Figure 10). It is not clear why
two different types of product form upon changing the hydride source.
Hydrosilylation of PhCHO Using Complex 5a. In a J-Young
tube complex 5a (5 mg, 0.0108 mmol), PhCHO (13 μL, 0.129 mmol),
PhSiH3 (36 μL, 0.291 mmol), and 0.5 mL of C6D6 were combined, and
the reaction was monitored by both 1H and 31P NMR spectroscopy at
room temperature. After 10 h at room temperature all of the benzalde-
hyde was consumed, and hydrosilylation products were observed, as
confirmed by 1H NMR spectroscopy and GC-MS. PhSi(OCH2Ph)3: 1H
NMR (400 MHz, C6D6) (selective part of the spectra): δ 5.22 (s,
OCH2Ph). GC-MS: m/z = 425 [M]+. 31P{1H} NMR (162 MHz, C6D6)
(Reaction mixture, 10 h): δ 165.1 (s), 14.7 (s).
(3) (a) Mcloughlin, M. A.; Flesher, R. J.; Kaska, W. C.; Mayer, H. A.
Organometallics 1994, 13, 3816. (b) Gupta, M.; Hagen, C.; Kaska, W. C.;
Cramer, R. E.; Jensen, C. M. J. Am. Chem. Soc. 1997, 119, 840. (c) Gupta,
M.; Kaska, W. C.; Jensen, C. M. Chem. Commun. 1997, 461. (d) Xu,
W. W.; Rosini, G. P.; Gupta, M.; Jensen, C. M.; Kaska, W. C.;
KroghJespersen, K.; Goldman, A. S. Chem. Commun. 1997, 2273.
(e) Haenel, M. W.; Oevers, S.; Angermund, K.; Kaska, W. C.; Fan,
H. J.; Hall, M. B. Angew. Chem., Int. Ed. 2001, 40, 3596. (f) Kimmich,
B. F. M.; Bullock, R. M. Organometallics 2002, 21, 1504. (g) Cꢀampora, J.;
Hydrosilylation Reaction Using Complex 4a. In a J-Young
tube complex 4a (5 mg, 0.0101 mmol), PhCHO (12.3 μL, 0.121 mmol),
PhSiH3 (34 μL, 0.273 mmol), and 0.5 mL of C6D6 were combined, and
the reaction was monitored by both 1H and 31P NMR spectroscopy at
1
ꢀ
Palma, P.; del Río, D.; Alvarez, E. Organometallics 2004, 23, 1652.
room temperature. H NMR (400 MHz, C6D6) (selective part of the
ꢀ
(h) Cꢀampora, J.; Palma, P.; del Río, D.; Conejo, M. M.; Alvarez, E.
spectra): δ 5.22 (s, OCH2Ph, PhSi(OCH2Ph)3), 4.85 (s), 4.74 (s), 4.61
(s), 4.49 (s), 4.23 (s, free PhSiH3).
Organometallics 2004, 23, 5653. (i) Zhu, K. M.; Achord, P. D.; Zhang,
X. W.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2004,
126, 13044. (j) Zhang, X. W.; Emge, T. J.; Ghosh, R.; Goldman, A. S.
J. Am. Chem. Soc. 2005, 127, 8250. (k) Zhao, J.; Goldman, A. S.; Hartwig,
J. F. Science 2005, 307, 1080. (l) Ghosh, R.; Kanzelberger, M.; Emge,
T. J.; Hall, G. S.; Goldman, A. S. Organometallics 2006, 25, 5668.
(m) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.;
Brookhart, M. Science 2006, 312, 257. (n) Zhang, X. W.; Emge, T. J.;
Ghosh, R.; Krogh-Jespersen, K.; Goldman, A. S. Organometallics 2006,
25, 1303. (o) Castonguay, A.; Beauchamp, A. L.; Zargarian, D. Organo-
metallics 2008, 27, 5723. (p) Bailey, B. C.; Schrock, R. R.; Kundu, S.;
Goldman, A. S.; Huang, Z.; Brookhart, M. Organometallics 2009, 28, 355.
(q) Boro, B. J.; Duesler, E. N.; Goldberg, K. I.; Kemp, R. A. Inorg. Chem.
2009, 48, 5081. (r) Castonguay, A.; Spasyuk, D. M.; Madern, N.;
Beauchamp, A. L.; Zargarian, D. Organometallics 2009, 28, 2134.
(s) Chakraborty, S.; Krause, J. A.; Guan, H. Organometallics 2009,
28, 582. (t) Choi, J.; Choliy, Y.; Zhang, X. W.; Emge, T. J.; Krogh-
Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2009, 131, 15627. (u)
Huang, Z.; Brookhart, M.; Goldman, A. S.; Kundu, S.; Ray, A.; Scott,
S. L.; Vicente, B. C. Adv. Synth. Catal. 2009, 351, 188. (v) Kundu, S.;
Choliy, Y.; Zhuo, G.; Ahuja, R.; Emge, T. J.; Warmuth, R.; Brookhart, M.;
Heating Complex 4a. In a J-Young tube complex 4a (5 mg, 0.0101
mmol), PhSiH3 (34 μL, 0.273 mmol), and 0.5 mL of C6D6 were
combined and heated at 100 °C for 1.5 h. The reaction was monitored
by 1H and 31P NMR spectroscopy. 1H NMR (500 MHz, C6D6)
(selective part of the spectra): Broad signals at δ 25.80, 16.53, and
9.36 and 2.49. 31P{1H} NMR (202 MHz, C6D6): δ 50.56 (s).
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic data for
b
complexes (CCDC nos. 826970À826980, 839072), including CIF
files and tables of coordinates, distances, and angles. This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: jones@chem.rochester.edu.
9452
dx.doi.org/10.1021/ic201102v |Inorg. Chem. 2011, 50, 9443–9453