ACS Medicinal Chemistry Letters
LETTER
’ AUTHOR INFORMATION
(11) Matthew, S.; Schupp, P. J.; Luesch, H. Apratoxin E, a cytotoxic
peptolide from a Guamanian collection of the marine cyanobacterium
Lyngbya bouillonii. J. Nat. Prod. 2008, 71, 1113–1116.
(12) Tidgewell, K.; Engene, N.; Byrum, T.; Media, J.; Doi, T.;
Valeriote, F. A.; Gerwick, W. H. Evolved diversification of a modular
natural product pathway: Apratoxins F and G, two cytotoxic cyclic
depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chem-
BioChem 2010, 11, 1458–1466.
(13) Liu, Y.; Law, B. K.; Luesch, H. Apratoxin A reversibly inhibits
the secretory pathway by preventing cotranslational translocation. Mol.
Pharmacol. 2009, 76, 91–104.
(14) Pleiotropic mechanisms on HSP90 client proteins have been
proposed for the apratoxins, although many of these observations may
be rationalized by inhibition of the secretory pathway:Shen, S.; Zhang,
P.; Lovchik, M. A.; Li, Y.; Tang, L.; Chen, Z.; Zeng, R.; Ma, D.; Yuan, J.;
Yu, Q. Cyclodepsipeptide toxin promotes the degradation of Hsp90
client proteins through chaperone-mediated autophagy. J. Cell. Biol.
2009, 185, 629–639.
(15) Ruan, W.-J.; Lai, M.-D. Autocrine stimulation in colorectal
carcinoma (CRC): Positive autocrine loops in human colorectal carci-
noma and applicable significance of blocking the loops. Med. Oncol.
2004, 21, 1–7.
(16) Chen, J.; Forsyth, C. J. Total synthesis of apratoxin A. J. Am.
Chem. Soc. 2003, 125, 8734–8735.
(17) Ma, D.; Zou, B.; Cai, G.; Hu, X.; Liu, J. O. Total synthesis of the
cyclodepsipeptide apratoxin A and its analogues and assessment of their
biological activities. Chem.—Eur. J. 2006, 12, 7615–7626.
(18) Doi, T.; Numajiri, Y.; Takahashi, T.; Takagi, M.; Shin-ya, K.
Solid-phase total synthesis of (ꢀ)-apratoxin A and its analogues and
their biological evaluation. Chem. Asian J. 2011, 6, 180–188.
(19) Doi, T.; Numajiri, Y.; Munakata, A.; Takahashi, T. Total
synthesis of apratoxin A. Org. Lett. 2006, 8, 531–534.
Corresponding Author
*E-mail: luesch@cop.ufl.edu.
Author Contributions
†These authors contributed equally to this work.
Funding Sources
This work was supported by the University of Florida Research
Opportunity Fund and the Bankhead-Coley Cancer Research
Program, Grant 1BG07.
’ ACKNOWLEDGMENT
We thank Prof. B. Law for initial help with tumor implantation.
’ ABBREVIATIONS
MET, met proto-oncogene (hepatocyte growth factor receptor);
PDGFR, platelet-derived growth factor receptor; RTK, receptor
tyrosine kinase; SAR, structureꢀactivity relationship; VEGF, vascu-
lar endothelial growth factor; VEGFR, VEGF receptor; Me, methyl;
Bu, butyl; Pr, propyl; PMB, p-methoxybenzyl; Troc, 2,2,2-trichlor-
oethoxycarbonyl; DMAP, 4-(dimethylamino)pyridine; DDQ, 2,3-
dichloro-4,5-dicyanobenzoquinone; Fmoc, 9-fluorenylmethoxycar-
bonyl; Trt, triphenylmethyl; HATU, O-(7-azabenzotriazol-1-yl)-N,
N,N0,N0-tetramethyluronium hexafluorophosphate; DIEA, diisopro-
pylethylamine; Tf, trifluoromethylsulfonyl
’ REFERENCES
(1) Baselga, J. Targeting tyrosine kinases in cancer: the second wave.
Science 2006, 312, 1175–1178.
(20) Numajiri, Y.; Takahashi, T.; Doi, T. Total synthesis of (ꢀ)-
apratoxin A, 34-epimer, and its oxazoline analogue. Chem. Asian J. 2009,
4, 111–125.
(21) Xu, Z.; Chen, Z.; Ye, T. Synthesis of polyketide segment of
apratoxin A. Tetrahedron: Asymmetry 2004, 15, 355–363.
(22) Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.;
Halterman, R. L. Asymmetric synthesis using diisopropyl tartrate
modified (E)- and (Z)-crotylboronates: Preparation of the chiral
crotylboronates and reactions with achiral aldehydes. J. Am. Chem. Soc.
1990, 112, 6339–6348.
(23) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A
rapid esterification by means of mixed anhydride and its application to
large-ring lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
(24) Travis, B. R.; Narayan, R. S.; Borhan, B. Osmium tetroxide-
promoted catalytic oxidative cleavage of olefins: an organometallic
ozonolysis. J. Am. Chem. Soc. 2002, 124, 3824–3825.
(25) You, S.-L.; Razavi, H.; Kelly, J. W. A biomimetic synthesis of
thiazolines using hexaphenyloxodiphosphonium trifluoromethanesulfo-
nate. Angew. Chem., Int. Ed. 2003, 42, 83–85.
(26) Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other
diseases. Nature 2000, 407, 249–257.
(27) Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and
other disease. Nat. Med. 1995, 1, 27–31.
(28) Kerbel, R. S. Tumor angiogenesis: Past, present and the near
future. Carcinogenesis 2000, 21, 505–515.
(29) Luesch, H.; Chanda, S. K.; Raya, R. M.; DeJesus, P. D.; Orth,
A. P.; Walker, J. R.; Izpisꢀua Belmonte, J. C.; Schultz, P. G. A functional
genomics approach to the mode of action of apratoxin A. Nat. Chem.
Biol. 2006, 2, 158–167.
(2) Lurje, G.; Lenz, H.-J. EGFR signaling and drug discovery.
Oncology 2009, 77, 400–410.
(3) Chow, L. Q.; Eckhardt, S. G. Sunitinib: From rational design to
clinical efficacy. J. Clin. Oncol. 2007, 25, 884–96.
(4) Kling, J. Bundling next-generation cancer therapies for synergy.
Nat. Biotechnol. 2006, 24, 871–872.
(5) Martinelli, E.; Troiani, T.; Morgillo, F.; Rodolico, G.; Vitagliano,
D.; Morelli, M. P.; Tuccillo, C.; Vecchione, L.; Capasso, A.; Orditura, M.;
De Vita, F.; Eckhardt, S. G.; Santoro, M.; Berrino, L.; Cardiello, F.
Synergistic antitumor activity of sorafenib in combination with epider-
mal growth factor receptor inhibitors in colorectal and lung cancer cells.
Clin. Cancer Res. 2010, 16, 4990–5001.
(6) Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.;
Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren,
E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizu-
mab plus irinotecan, fluorouracil, and leucovorin for metastatic color-
ectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342.
(7) Koutras, A. K.; Starakis, I.; Kyriakopoulou, U.; Katsaounis, P.;
Nikolakopoulos, A.; Kalofonos, H. P. Targeted therapy in colorectal
cancer: Current status and future challenges. Curr. Med. Chem. 2011,
18, 1599–1612.
(8) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Corbett,
T. H. Total structure determination of apratoxin A, a potent novel
cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am.
Chem. Soc. 2001, 123, 5418–5423.
(9) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Corbett,
T. H. New apratoxins of marine cyanobacterial origin from Guam and
Palau. Bioorg. Med. Chem. 2002, 10, 1973–1978.
(10) Gutierrez, M.; Suyama, T. L.; Engene, N.; Wingerd, J. S.;
Matainaho, T.; Gerwick, W. H. Apratoxin D, a potent cytotoxic
cyclodepsipeptide from Papua New Guinea collections of the marine
cyanobacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod. 2008,
71, 1099–1103.
865
dx.doi.org/10.1021/ml200176m |ACS Med. Chem. Lett. 2011, 2, 861–865