Journal of the American Chemical Society
COMMUNICATION
In an effort to further probe the flexibility of CrpD-M2 to
substrate stereochemistry, D-2HIC (20) was substituted for
2 in the chemoenzymatic reaction. Following loading of chain
elongation intermediate 3, no cyclic depsipeptide product was
detected (Figure 3C), but a small amount of linear product was
formed (Figure 3D), suggesting that the C domain of CrpD-M2
was able to recognize the stereoisomer of its acceptor substrate
and catalyze ester bond formation with its donor ABC chain
elongation intermediate, albeit at a lower level. It also indicated
that the natural outcome of the unit D KR reaction was L-2HIC,
followed by esterification and macrocyclization. The failure to
macrocyclize ABC-D-2HIC substrates suggests that the “gate-
keepers” for unit D stereochemical selection are the CrpD-M2 R-
KR domain and Crp TE rather than its C or A domain.
In summary, non-amino acid extender subunits selected and
processed by NRPS enzymes have been found in a handful of
natural products isolated from bacteria and fungi. However, a
complete mechanism for understanding their incorporation has
not been established. In this study, CrpD-M2 coupled with Crp
TE was used to further explore unit D selection, loading, reduction,
elongation through an ester bond, and final product formation.
FTICR-MS was employed to assess these five sequential biochemical
reactions that occurred through a complete NRPS module including
A, C, KR, T, and TE domains. This is also the first study in which a
NRPS bearing an embedded KR domain was used to directly
generate bioactive compounds from fully elaborated natural and
unnatural chain elongation intermediates to provide cyclic crypto-
phycins 3, 24, and 51. Thus, CrpD-M2 as a chemoenzymatic reagent
or as part of a microbial-derived production strategy has the potential
to generate novel Crp analogues. Future efforts will focus on new
analogues with improved physicochemical properties that may be
beneficial as clinical agents for treatment of malignant diseases.
(6) Magarvey, N. A.; Beck, Z. Q.; Golakoti, T.; Ding, Y.; Huber, U.;
Hemscheidt, T. K.; Abelson, D.; Moore, R. E.; Sherman, D. H. ACS
Chem. Biol. 2006, 1, 766–779.
(7) Ding, Y.; Seufert, W. H.; Beck, Z. Q.; Sherman, D. H. J. Am.
Chem. Soc. 2008, 130, 5492–5498.
(8) Beck, Z. Q.; Aldrich, C. C.; Magarvey, N. A.; Georg, G. L.;
Sherman, D. H. Biochemistry 2005, 44, 13457–13466.
(9) Beck, Z. Q.; Burr, D. A.; Sherman, D. H. Chembiochem 2007, 8,
1373–1375.
(10) Eggen, M.; Georg, G. I. Med. Res. Rev. 2002, 22, 85–101.
(11) Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore, R. E.;
Corbett, T. H.; Valeriote, F. A.; Demchik, L. J. Am. Chem. Soc. 1994, 116,
4729–4737.
(12) Kobayashi, M.; Aoki, S.; Ohyabu, N.; Kurosu, M.; Wang, W.;
Kitagawa, I. Tetrahedron Lett. 1994, 35, 7969–7972.
(13) Ghosh, A. K.; Swanson, L. J. Org. Chem. 2003, 68, 9823–9826.
(14) Pfeifer, B. A.; Admiraal, S. J.; Gramajo, H.; Cane, D. E.; Khosla,
C. Science 2001, 291, 1790–1792.
(15) Dorrestein, P. C.; Bumpus, S. B.; Calderone, C. T.; Garneau-
Tsodikova, S.; Aron, Z. D.; Straight, P. D.; Kolter, R.; Walsh, C. T.;
Kelleher, N. L. Biochemistry 2006, 45, 12756–12766.
(16) Challis, G. L.; Ravel, J.; Townsend, C. A. Chem. Biol. 2000, 7,
211–224.
(17) Calderone, C. T.; Bumpus, S. B.; Kelleher, N. L.; Walsh, C. T.;
Magarvey, N. A. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12809–12811.
(18) Chang, Z.; Flatt, P.; Gerwick, W. H.; Nguyen, V. A.; Willis,
C. L.; Sherman, D. H. Gene 2002, 296, 235–247.
(19) Xu, Y.; Orozco, R.; Kithsiri Wijeratne, E. M.; Espinosa-Artiles,
P.; Leslie Gunatilaka, A. A.; Patricia Stock, S.; Molnar, I. Fungal Genet.
Biol. 2009, 46, 353–364.
(20) Xu, Y.; Orozco, R.; Wijeratne, E. M.; Gunatilaka, A. A.; Stock,
S. P.; Molnar, I. Chem. Biol. 2008, 15, 898–907.
(21) Magarvey, N. A.; Ehling-Schulz, M.; Walsh, C. T. J. Am. Chem.
Soc. 2006, 128, 10698–10699.
(22) Haese, A.; Schubert, M.; Herrmann, M.; Zocher, R. Mol.
Microbiol. 1993, 7, 905–914.
(23) Ramaswamy, A. V.; Sorrels, C. M.; Gerwick, W. H. J. Nat. Prod.
2007, 70, 1977–1986.
(24) Fujimori, D. G.; Hrvatin, S.; Neumann, C. S.; Strieker, M.;
Marahiel, M. A.; Walsh, C. T. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
16498–16503.
’ ASSOCIATED CONTENT
S
Supporting Information. Methods, figures, and tables.
b
This material is available free of charge via the Internet at http://
pubs.acs.org.
(25) Meluzzi, D.; Zheng, W. H.; Hensler, M.; Nizet, V.; Dorrestein,
P. C. Bioorg. Med. Chem. Lett. 2008, 18, 3107–3111.
(26) Dorrestein, P. C.; Kelleher, N. L. Nat. Prod. Rep. 2006, 23,
893–918.
(27) Gu, L.; Geders, T. W.; Wang, B.; Gerwick, W. H.; Hakansson,
K.; Smith, J. L.; Sherman, D. H Science 2007, 318, 970–973.
(28) Gu, L.;ꢀWang, B.; Kulkarni, A.; Geders, T. W.; Grindberg, R. V.;
Gerwick, L.; Hakansson, K.; Wipf, P.; Smith, J. L.; Gerwick, W. H.;
Sherman, D. H. Nature 2009, 459, 731–735.
’ AUTHOR INFORMATION
Corresponding Author
Author Contributions
#These authors contributed equally to this work.
(29) Lee, C.; Gorisch, H.; Kleinkauf, H.; Zocher, R. J. Biol. Chem.
1992, 267, 11741–11744.
’ ACKNOWLEDGMENT
(30) Caffrey, P. Chem. Biol. 2005, 12, 1060–1062.
(31) Caffrey, P. Chembiochem 2003, 4, 654–657.
(32) Siskos, A. P.; Baerga-Ortiz, A.; Bali, S.; Stein, V.; Mamdani, H.;
Spiteller, D.; Popovic, B.; Spencer, J. B.; Staunton, J.; Weissman, K. J.;
Leadlay, P. F. Chem. Biol. 2005, 12, 1145–1153.
Y.D. was supported by a Rackham Predoctoral Fellowship.
This work was supported by NIH grant CA108874, GM076477
and the HansW. VahlteichProfessorship(toD.H.S.).WorkinK.H.’s
laboratory is supported by an NSF Career Award (CHE-05-47699).
(33) Seufert, W.; Beck, Z. Q.; Sherman, D. H. Angew. Chem., Int. Ed.
2007, 46, 9298–9300.
(34) Zaleta-Rivera, K.; Xu, C.; Yu, F.; Butchko, R. A. E.; Proctor,
R. H.; Hidalgo-Lara, M. E.; Raza, A.; Dussault, P. H.; Du, L. Biochemistry
2006, 45, 2561–2569.
’ REFERENCES
(1) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G. Q.;
Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939–9953.
(2) Wohlleben, W.; Pelzer, S. Chem. Biol. 2002, 9, 1163–1164.
(3) Ran, N.; Rui, E.; Liu, J.; Tao, J. Curr. Pharm. Des. 2009, 15, 134–152.
(4) Borst, P.; Evers, R.; Kool, M.; Wijholds, J. J. Nat. Cancer Inst.
2000, 92, 1295–1302.
(35) Lin, S.; Van Lanen, S. G.; Shen, B. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 4183–4188.
(5) Kerksiek, K.; Mejilano, M. R.; Schwartz, R. E.; Georg, G. L.;
Himes, R. H. FEBS Lett. 1995, 377, 59–61.
14495
dx.doi.org/10.1021/ja204716f |J. Am. Chem. Soc. 2011, 133, 14492–14495