Journal of the American Chemical Society
COMMUNICATION
’ REFERENCES
(24) (a) Okamoto, A.; Tainaka, K.; Saito, I. J. Am. Chem. Soc. 2003,
125, 4972. (b) Okamoto, A.; Tainaka, K.; Saito, I. Tetrahedron Lett.
2003, 44, 6871.
(25) Wilhelmsson, L. M.; Holmꢀen, A.; Lincoln, P.; Nielsen, P. E.;
Nordꢀen, B. J. Am. Chem. Soc. 2001, 123, 2434.
(26) A few emissive purine analogues have been reported, but no
biophysical applications have been described. See: (a) Greco, N. J.; Tor,
Y. Tetrahedron 2007, 63, 3515. (b) Dyrager, C.; Borjesson, K.; Diner, P.;
Elf, A.; Albinsson, B.; Wilhelmsson, L. M.; Grotli, M. Eur. J. Org. Chem.
2009, 1515. (c) Dierckx, A.; Diner, P.; El-Sagheer, A. H.; Kumar, J. D.;
Brown, T.; Grotli, M.; Wilhelmsson, L. M. Nucleic Acids Res. 2011, 39,
4513.
(27) The relatively high quantum yields of the emissive nucleosides
and their sensitivity to environmental polarity suggest utility in diverse
biophysical and discovery assays, which include, for example, monitoring
of RNA conformational changes as well as RNAꢀprotein and RNAꢀ
small-molecule interactions.
(1) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev. 2010, 110, 2579.
(2) (a) Okamoto, A.; Saito, Y.; Saito, I. J. Photochem. Photobiol., C
2005, 6, 108. (b) Wilson, J. N.; Kool, E. T. Org. Biomol. Chem. 2006,
4, 4265. (c) Dodd, D. W.; Hudson, R. H. E. Mini-Rev. Org. Chem. 2009,
6, 378. (d) Wilhelmsson, L. M. Q. Rev. Biophys. 2010, 43, 159. (e)
Kimoto, M.; Cox, R. S., III; Hirao, I. Expert Rev. Mol. Diagn. 2011, 11, 321.
(3) (a) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784. (b) Tor,
Y.; Del Valle, S.; Jaramillo, D.; Srivatsan, S. G.; Rios, A.; Weizman, H.
Tetrahedron 2007, 63, 3608. (c) Tor, Y. Pure Appl. Chem. 2009, 81, 263.
(4) Kool has reported a complete set of emissive expanded RNA
nucleoside analogues. See: Hernꢀandez, A. R.; Kool, E. T. Org. Lett. 2011,
13, 676.
(5) Fused heteroaromatics are known to be emissive. See: (a)
Wettack, F. S.; Klapthor, R.; Shedd, A.; Koeppe, M.; Janda, K.; Dwyer,
P.; Stratton, K. NBS Spec. Publ. (U. S.) 1978, 526, 60. (b) Zander, M.;
Kirsch, G. Z. Naturforsch. 1989, 44a, 205.
(6) It should be noted that related nucleosides have previously been
explored for their antiviral and chemotherapeutic potential but never as
fluorescent nucleoside analogues. See: (a) Rao, S. P.; Rao, K. V. B.;
Otter, B. A.; Klein, R. S.; Ren, W.-Y. Tetrahedron Lett. 1988, 29, 3537. (b)
Patil, S. A.; Otter, B. A.; Klein, R. S. Nucleosides Nucleotides 1990, 9, 937.
(c) Patil, S. A.; Otter, B. A.; Klein, R. S. J. Heterocycl. Chem. 1993, 30, 509.
(7) We previously reported the synthesis of the thU analogue. See:
(a) Srivatsan, S. G.; Weizman, H.; Tor, Y. Org. Biomol. Chem. 2008,
6, 1334. (b) Srivatsan, S. G.; Greco, N. J.; Tor, Y. Angew. Chem., Int. Ed.
2008, 47, 6661.
(8) The synthesis of the thA analogue closely followed Klein’s report.6c
(9) See the SI for additional data.
(10) Other protecting groups (e.g., pivaloyl) at N2 hampered this
FriedelꢀCrafts reaction, leading to undesired products.
(11) For a general review of C-nucleosides, see: Stambasky, J.;
Hocek, M.; Kocovsky, P. Chem. Rev. 2009, 109, 6729.
(12) See the SI for an HMBC experiment.
(13) Unmodified thU (18% over two steps) was also recovered
(see the SI).
(14) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205.
(15) Attempts to obtain suitable crystals of the unprotected thG were
unsuccessful.
(16) Solvent-induced tautomerization can also contribute to solvent
sensitivity.
(17) (a) Sinkeldam, R. W.; Tor, Y. Org. Biomol. Chem. 2007, 5, 2523.
(b) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. ChemBioChem 2008, 9, 706.
(18) It is not uncommon to observe the greatest deviation from
linearity in pure solvents, since solvent mixtures tend to suppress specific
solventꢀsolute interactions present only in the former. See ref 17a for a
discussion related to the effects of pure solvents and their mixtures on
the photophysical features of fluorophores.
(19) (a) Ward, D. C.; Reich, E.; Stryer, L. J. Biol. Chem. 1969,
244, 1228. (b) Jean, J. M.; Hall, K. B. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 37. (c) Jean, J. M.; Hall, K. B. Biochemistry 2002, 41, 13152.
(20) (a) Kirk, S. R.; Luedtke, N. W.; Tor, Y. Bioorg. Med. Chem. 2001,
9, 2295. (b) Tam, V. K.; Kwong, D.; Tor, Y. J. Am. Chem. Soc. 2007,
129, 3257.
(21) The relative quantum yield was determined by comparing the
emission of 1a to that of thG under analogous conditions (see the SI).
(22) (a) Greco, N. J.; Sinkeldam, R. W.; Tor, Y. Org. Lett. 2009, 11,
1115. (b) Xie, Y.; Dix, A. V.; Tor, Y. J. Am. Chem. Soc. 2009, 131, 17605.
(c) Xie, Y.; Dix, A. V.; Tor, Y. Chem. Commun. 2010, 46, 5542. (d) Xie,
Y.; Maxson, T.; Tor, Y. J. Am. Chem. Soc. 2010, 132, 11896. (e) Sinkeldam,
R. W.; Wheat, A. J.; Boyaci, H.; Tor, Y. ChemPhysChem 2010, 12, 567.
(f) Sinkeldam, R. W.; Marcus, P.; Uchenik, D.; Tor, Y. ChemPhysChem
2011, 12, 2260.
(23) (a) Robins, M. J.; Barr, P. J. Tetrahedron Lett. 1981, 22, 421. (b)
Robins, M. J.; Barr, P. J. J. Org. Chem. 1983, 48, 1854. (c) Liu, C. H.;
Martin, C. T. J. Mol. Biol. 2001, 308, 465. (d) Hudson, R. H. E.;
Choghamarani, A. G. Nucleosides, Nucleotides Nucleic Acids 2007, 26, 533.
14915
dx.doi.org/10.1021/ja206095a |J. Am. Chem. Soc. 2011, 133, 14912–14915