ORGANIC
LETTERS
2011
Vol. 13, No. 20
5516–5519
Efficient Synthesis of Benzo Fused
Tetrathia[7]helicenes
Deepali Waghray, Wienand Nulens, and Wim Dehaen*
Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit
Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Received August 18, 2011
ABSTRACT
An efficient route toward the synthesis of symmetrical and unsymmetrical benzo fused tetrathia[7]helicenes substituted with electron donor (ED)
and electron acceptor (EA) groups is reported. A common, readily available precursor 1,2- bis-(2-thienyl)benzene was used to synthesize different
helicenes through a Wittig reaction, Stille coupling, and modified oxidative photocyclization.
Helicenes constitute a fascinating class of ortho-annu-
lated polycyclic aromatic or heteroaromatic compounds
endowed with inherent chirality due to the helical shape
of their π-conjugated system.1 These nonplanar helical
molecules exhibit unique electronic2 and chiro-optical
properties.3 Enantiopure functionalized derivatives of
(hetera)helicenes can be isolated owing to their stability
and rigid helical framework. They are potential candidates
for chiral catalysts,4 helical ligands,5 and asymmetric
inducers6 and have been used as building blocks for helical
conjugated polymers.7 Since the synthesis of hexahelicene
in 1956 by Newman and Lednicer8 via FriedelꢀCrafts
cyclization, various synthetic routes have been described
for carbahelicenes. These include the widely used oxidative
photocyclization, also known as the Mallory reaction,9
and a few nonphotochemical routes10 such as DielsꢀAlder
reactions, cyclotrimerization of acetylenes, carbenoid cou-
pling, radical cyclization, and olefin metathesis.
(1) For reviews on synthesis of helicenes, see: (a) Rajca, A.; Miyasa-
ka, M. Synthesis and Characterization of Novel Chiral Conjugated
Materials, Functional Organic Materials: Syntheses and Strategies;
M€ueller, T. J. J., Bunz, U. H. F., Eds.; Wiley-VCH: Weinheim, Germany,
2007; pp 543ꢀ577. (b) Rajca, A.; Rajca, S.; Pink, M.; Miyasaka, M.
Synlett. 2007, 1799–1822. (c) Collins, S. K.; Vachon, M. P. Org. Biomol.
The synthesis of the first [7]helicene was reported by
Martin and co-workers in 1967, who employed the oxida-
tive photocyclization of stilbenes as the key process.11
Since then, the Mallory reaction has remained the method
Chem. 2006, 4, 2518–2524. (d) Torroba, T.; Garcıa-Valverde, M. Angew.
´
Chem., Int. Ed. 2006, 45, 8092–8096. (e) Urbano, A. Angew. Chem., Int.
Ed. 2003, 42, 3986–3989.
(2) Nuckolls, C.; Shao, R. F.; Jang, W. G.; Clark, N. A.; Walba,
(8) Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956, 78, 4765–
4770.
(9) (a) Laarhoven, W. H. Pure Appl. Chem. 1984, 56, 1225–1240.
(b) Jorgensen, K. B. Molecules 2010, 15, 4334–4358.
D. M.; Katz, T. J. Chem. Mater. 2002, 14, 773–776.
(3) (a) Verbiest, T.; Sioncke, S.; Persoons, A.; Vyklicky, L.; Katz,
T. J. Angew. Chem., Int. Ed. 2002, 41, 3882–3884. (b) Busson, B.;
Kauranen, M.; Nuckolls, C.; Katz, T. J.; Persoons, A. Phys. Rev. Lett.
2000, 84, 79–82.
(4) (a) Reetz, M. T.; Beuttenmuller, E. W.; Goddard, R. Tetrahedron
Lett. 1997, 38, 3211–3214. (b) Reetz, M. T.; Sostmann, S. J. Organomet.
Chem. 2000, 603, 105–109. (c) Dreher, S. D.; Katz, T. J.; Lam, K. C.;
Rheingold, A. L. J. Org. Chem. 2000, 65, 815–822.
(5) Fox, J. M.; Katz, T. J. J. Org. Chem. 1999, 64, 302–305.
(6) Ben Hassine, B.; Aloui, F.; El Abed, R. Tetrahedron Lett. 2008,
49, 1455–1457.
(7) (a) Sudhakar, A.; Katz, T. J.; Yang, B. W. J. Am. Chem. Soc.
1986, 108, 2790–2791. (b) Katz, T. J.; Sudhakar, A.; Teasley, M. F.;
Gilbert, A. M.; Geiger, W. E.; Robben, M. P.; Wuensch, M.; Ward,
M. D. J. Am. Chem. Soc. 1993, 115, 3182–3198.
(10) Nonphotochemical routes: (a) Fox, J. M.; Goldberg, N. R.;
Katz, T. J. J. Org. Chem. 1998, 63, 7456–7462. (b) Carreno, M. C.;
Enriquez, A.; Garcia-Cerrada, S.; Sanz-Cuesta, M. J.; Urbano, A.;
Maseras, F.; Nonell-Canals, A. Chem.;Eur. J. 2008, 14, 603–620
. (c) Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem.,
Int. Ed. 2009, 48, 5470–5473. (d) Dubois, F.; Gingras, M. Tetrahedron
Lett. 1998, 39, 5039–5040. (e) Gingras, M.; Goretta, S.; Tasciotti, C.;
Mathieu, S.; Smet, M.; Maes, W.; Chabre, Y. M.; Dehaen, W.; Giasson,
R.; Raimundo, J. M.; Henry, C. R.; Barth, C. Org. Lett. 2009, 11, 3846–
3849. (f) Pieters, G.; Gaucher, A.; Prim, D.; Marrot, J. Chem. Commun.
2009, 4827–4828. (g) Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew.
Chem., Int. Ed. 2006, 45, 2242–2245. (h) Grandbois, A.; Collins, S. K.
Chem.;Eur. J. 2008, 14, 9323–9329.
(11) (a) Flammang., M; Nasielsk., J; Martin, R. H. Tetrahedron Lett.
1967, 743. (b) Jorgensen, K. B. Molecules 2010, 15, 4334–4358.
r
10.1021/ol202236r
Published on Web 09/15/2011
2011 American Chemical Society