Synthesis and Fluoresce of Benzene–Pyrrole Oligomers
silica gel (hexane/ethyl acetate, 20:1) to give 3f as white crystals
(0.55 g, 48%); m.p. 153–154 °C. H NMR (400 MHz, CDCl3): δ =
133.5, 137.0, 139.2, 147.8, 151.6 (Ar-C) ppm. HRMS: calcd. for
C42H43NO2 593.3294; found 593.3281. C42H43NO2 (593.3): calcd.
1
0.90 (t, J = 7.3 Hz, 3 H, nBu CH3), 1.34–1.40 (m, 2 H, nBu CH2), C 84.95, H 7.30, N 2.36; found C 84.67, H 7.28, N 2.35.
1.58–1.64 (m, 2 H, nBu CH2), 2.51 (t, J = 7.7 Hz, 2 H, nBu CH2),
2-[4-(3,5-Diphenylfuran-2-yl)phenyl]-1,3,5-triphenyl-1H-pyrrole (8):
In a procedure similar to that for the preparation of 5, a solution of
4.60 (s, 2 H, OCH2), 6.42 (s, 1 H, Pyrrole-H), 6.93–6.94 (m, 2 H,
Ar-H), 7.03–7.07 (m, 4 H, Ar-H), 7.14–7.20 (m, 8 H, Ar-H) ppm.
the propargylic dithioacetal 1a (0.85 g, 3 mmol) in THF (100 mL),
13C NMR (100 MHz, CDCl3): δ = 14.0 (nBu CH3), 22.7, 26.0, 33.6,
nBuLi (2.5 m in hexane, 1.35 mL, 3.3 mmol), and the imine 7 (0.6 g,
65.2 (CH2OH), 110.4, 123.6, 126.4, 126.6, 127.6, 128.5, 128.8,
1
1.5 mmol) were used to give 8 (0.39 g, 44%); m.p. 119–120 °C. H
130.8, 132.6, 132.8, 133.5, 138.3, 139.2 (Ar-C) ppm. HRMS: calcd.
NMR (400 MHz, CDCl3): δ = 6.70 (s, 1 H, Pyrrole-H), 6.78 (s, 1
for C27H27NO 381.2093; found 381.2100. C27H27NO (381.2): calcd.
C 85.00, H 7.13, N 3.67; found C 84.74, H 7.13, N 3.83.
H, Furan-H), 7.01–6.93 (m, 4 H, Ar-H), 7.41–7.12 (m, 23 H, Ar-
H), 7.73 (d, J = 7.2 Hz, 2 H, Ar-H) ppm. 13C NMR (100 MHz,
2-{4-[2-(Hex-1-yn-1-yl)-1,3-dithiolan-2-yl]phenyl}-1,3,5-triphenyl-
1H-pyrrole (3g): In a procedure similar that for to the preparation
of 3a, a solution of 2-phenyl-2-(2-phenylethynyl)-1,3-dithiolane (1a;
1.02 g, 3.6 mmol) in THF (100 mL), a solution of nBuLi (2.5 m in
hexane, 1.4 mL, 3.5 mmol), and the imine 2d (1.10 g, 3 mmol) were
used to give 3g (0.72 g, 43 %); m.p. 134–135 °C. 1H NMR
(400 MHz, CDCl3): δ = 0.91 (t, J = 7.3 Hz, 3 H, nBu CH3), 1.39–
1.44 (m, 2 H, nBu CH2), 1.50–1.56 (m, 2 H, nBu CH2), 2.33 (t, J
= 7.1 Hz, 2 H, nBu CH2), 3.62–3.69 (m, 4 H, Dithiolane-H), 6.69
(s, 1 H, Pyrrole-H), 6.96–7.00 (m, 4 H, Ar-H), 7.25–7.10 (m, 13 H,
Ar-H), 7.70 (d, J = 8.4 Hz, 2 H, Ar-H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 13.6 (nBu CH3), 18.9, 22.1, 30.7, 41.2, 62.1, 82.3, 88.2
(Alkyne-C), 110.2, 123.9, 125.5, 126.4, 127.2, 127.3, 127.9, 128.2,
128.3, 128.5, 128.6, 129.0, 131.0, 131.5, 132.5, 132.9, 135.0, 136.0,
137.6, 138.7 (Ar-C) ppm. HRMS: calcd. for C37H34NS2 555.2054;
found 555.2054. C37H33NS2 (555.2): calcd. C 79.96, H 5.98, N 2.52;
found C 79.84, H 6.15, N 2.62.
CDCl3): δ = 109.6, 110.2, 123.8, 124.7, 125.3, 125.6, 126.4, 127.2,
127.3, 127.5, 127.9, 128.2, 128.3, 128.5, 128.6, 128.6, 128.7, 129.1,
129.3, 130.4, 131.3, 131.6, 132.8, 134.2, 135.0, 136.1, 138.8, 147.5,
152.5 ppm. HRMS: calcd. for C44H31NO 589.2406; found
589.2416. C44H31NO (589.2): calcd. C 89.61, H 5.30, N 2.38; found
C 89.31, H 5.34, N 2.47.
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the 1H and 13C NMR spectra for all new com-
pounds.
Acknowledgments
The authors gratefully acknowledge financial support from the
National Natural Science Foundation of China (No. 20972056) and
the Program for Changjiang Scholars and Innovative Research
Team in University (PCSIRT) (No. IRT0953). We thank Prof. Tien-
Lau Luh from the National Taiwan University for helpful dis-
cussions.
3-Butyl-1,2-diphenyl-5-[4-(1,3,5-triphenyl-1H-pyrrol-2-yl)phenyl]-
1H-pyrrole (5): In a procedure similar to that for the preparation
of 3a, a solution of propargylic dithioacetal (3g; 0.6 g, 1.1 mmol)
in THF (100 mL), a solution of nBuLi (2.5 m in hexane, 0.5 mL,
1.25 mmol), and N-benzylideneaniline (2c; 0.29 g, 1.6 mmol) were
used. After the usual workup, the residue was recrystallized from
dichloromathene to give 5 (0.37 g, 52 %); m.p. 250–251 °C. 1H
NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 7.3 Hz, 2 H, nBu CH3),
1.33–1.39 (m, 2 H, nBu CH2), 1.57–1.62 (m, 2 H, nBu CH2), 2.48
(t, J = 7.6 Hz, 2 H, nBu CH2), 6.39 (s, 1 H, Pyrrole-H), 6.68 (s, 1 H,
Pyrrole-H), 6.81–7.23 (m, 29 H, Ar-H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 13.8 (CH3), 22.6, 25.9, 33.5, 109.9, 110.7, 123.5, 125.3,
126.2, 126.3, 126.4, 126.9, 127.4, 127.8, 127.8, 127.9, 128.1, 128.3,
128.4, 128.7, 129.0, 130.8, 131.8, 132.1, 136.1, 138.8, 139.0 (Ar-
C) ppm. HRMS: calcd. for C48H40N2: 644.3191; found 644.3185.
C48H40N2 (644.3): calcd. C 89.40, H 6.25, N 4.34; found C 89.12,
H 6.28, N 4.35.
[1] a) Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953–1010;
b) K. Müllen, G. Wegner (Eds.), Electronic Materials: The
Oligomer Approach, Wiley-VCH, Weinheim, 1998, vol. 7, pp.
403–410.
[2] a) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz,
A. B. Holmes, Chem. Rev. 2009, 109, 897–1091; b) E. Kim,
S. B. Park, Chem. Asian J. 2009, 4, 1646–1658; c) C. M. Chou,
C.-H. Chen, C. L. Lin, K.-W. Yang, T. S. Lim, T. Y. Luh, Tetra-
hedron 2009, 65, 9749–9755.
[3] a) A. Mishra, C. Q. Ma, P. Bauerle, Chem. Rev. 2009, 109,
1141–1278; b) V. Ho, B. W. Boudouris, R. A. Segalman, Mac-
romolecules 2010, 43, 7895–7899; c) M. Fujii, T. Nishinaga, M.
Iyoda, Tetrahedron Lett. 2009, 50, 555–558.
[4] a) H. C. Lin, W. Y. Lin, H. T. Bai, J. H. Chen, B. Y. Jin, T. Y.
Luh, Angew. Chem. Int. Ed. 2007, 46, 897–900; b) H. T. Bai,
H. C. Lin, T. Y. Luh, J. Org. Chem. 2010, 75, 4591–4595; c)
H. C. Lin, J. H. Hsu, C. K. Lee, Y. H. Tai, C. H. Wang, C. M.
Chou, K. Y. Chen, Y. L. Wu, T. Y. Luh, Chem. Eur. J. 2009,
15, 13201–13209; d) Y. Miyata, T. Nishinaga, K. Komatsu, J.
Org. Chem. 2005, 70, 1147–1153; e) R. Vivas-Reyes, L. D. Mer-
cado, J. Anaya-Gil, A. G. Marrugo, E. Martinez, THEO-
CHEM 2008, 861, 137–141.
[5] a) H. Maeda, Y. Mihashi, Y. Haketa, Org. Lett. 2008, 10, 3179–
3198; b) F. Ullah, T. T. Dang, J. Heinicke, A. Villinger, P.
Langer, Synlett 2009, 838–842; c) C. P. Andrieux, P. Hapiot, P.
Audebert, L. Guyard, M. N. Dinh An, L. Groenendaal, E. W.
Meijer, Chem. Mater. 1997, 9, 723–729; d) M. M. M. Raposo,
A. M. B. A. Sampaio, G. Kirsch, Synthesis 2005, 199–210.
[6] a) H. S. P. Rao, S. Jothilingam, J. Org. Chem. 2003, 68, 5392–
5394; b) D. Simoni, R. Rondanin, G. Furnò, E. Aiello, F. P.
Invidiata, Tetrahedron Lett. 2000, 41, 2699–2703; c) S. Ma, F.
Yu, W. Gao, J. Org. Chem. 2003, 68, 5943–5945; d) R. Dhawan,
B. A. Arndtsen, J. Am. Chem. Soc. 2004, 126, 468–469; e) M.
3-Butyl-5-(4-{3-butyl-5-[4-(methoxymethyl)phenyl]furan-2-yl}phen-
yl)-1,2-diphenyl-1H-pyrrole (6): In a procedure similar to that for
the preparation of 5, a solution of the propargylic dithioacetal 4
(0.5 g, 1 mmol) in THF (50 mL), nBuLi (2.5 m in hexane, 0.5 mL,
1.25 mmol), and N-benzylideneaniline (2c; 0.26 g, 1.4 mmol) were
used to give 5 (0.29 g, 49%); m.p. 155–156 °C. 1H NMR (400 MHz,
CDCl3): δ = 0.89–0.96 (m, 6 H, 2 nBu CH3), 1.36–1.45 (m, 4 H, 2
nBu CH2), 1.60–1.68 (m, 4 H, 2 nBu CH2), 2.52 (t, J = 7.6 Hz, 2
H, nBu CH2), 2.65 (t, J = 7.6 Hz, 2 H, nBu CH2), 3.39 (s, 3 H,
OCH3), 4.46 (s, 2 H, OCH2), 6.48 (s, 1 H, Pyrrole-H), 6.62 (s, 1 H,
Furan-H), 6.98 (d, J = 6.0 Hz, 2 H, Ar-H), 7.06 (dd, J = 7.6, J =
1.6 Hz, 2 H, Ar-H), 7.10–7.20 (m, 8 H, Ar-H), 7.33 (d, J = 8.0 Hz,
2 H, Ar-H), 7.49 (d, J = 8.4 Hz, 2 H, Ar-H), 7.66 (d, J = 8.4 Hz,
2 H, Ar-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.9 (nBu
CH3), 14.0, 22.6, 22.7, 25.8, 26.0, 32.0, 33.6, 58.0 (OCH3), 74.5
(OCH2), 109.3, 110.5, 123.6, 123.7, 124.0, 124.8, 126.5, 126.7,
127.6, 128.1, 128.3, 128.5, 128.9, 129.2, 130.2, 130.9, 131.6, 132.8,
Eur. J. Org. Chem. 2011, 4588–4594
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4593