R. Gilmour, H. M. Senn et al.
(CCCNO2), 128.1 (Ph3), 127.9 (d, 4JCF =1.6 Hz; Ph3’), 127.6 (Ph4), 127.4
(Ph4’), 126.1 (d, 3JCF =10.3 Hz; Ph2), 125.8 (d, 3JCF =9.3 Hz; Ph2’), 123.8
(CCNO2), 100.8 (d, 1JCF =185.4 Hz; CF), 83.6 (d, 2JCF =23.9 Hz; CCF),
[4] For examples, see a) B. Lippert, B. W. Metcalf, R. J. Resvick, Bio-
K. R. Karukurichi, R. De La Salud-Bea, D. L. Nelson, C. D.
K. R. Karukurichi, R. De La Salud-Bea, G. Maiti, J. M. McFadden,
M. L. Morris, ACS Symp. Ser. 2009, 1009, 288–303; e) D. B. Berko-
[5] D. Murali, L. G. Flores, A. D. Roberts, R. J. Nickles, O. T. DeJesus,
[6] M. G. Palfreyman, C. Danzin, P. Bey, M. J. Jung, G. Ribereau-
[7] For selected examples, see a) M.-D. Tsai, H. J. R. Weintraub, S. R.
Nagata, M. Doi, M. Inoue, T. Ishida, M. Kamigauchi, M. Sugiura, A.
[8] a) C. Bꢄguin, S. Hamman, Org. Magn. Reson. 1981, 16, 129–132;
Durlu, Z. Naturforsch. B 2002, 57, 685–690.
4
29.9 (CMe2), 21.6 (d, JCF =3.3 Hz; Me), 19.3 ppm (d, 4JCF =3.4 Hz; Me’);
19F NMR (376 MHz, CDCl3): d=ꢀ155.3 ppm (d, 3JHF =20.3 Hz); IR
(neat): n˜max =2963 (w), 1645 (w), 1598 (m), 1517 (s), 1450 (m), 1338 (s),
1201 (w), 1145 (w), 1102 (w), 1061 (m), 993 (m), 941 (w), 882 (w), 856
(m), 789 (m), 757 (s), 747 (s), 696 (s), 668 (m), 638 cmꢀ1 (w); HRMS
(ESI): m/z: calcd for C24H24FN2O2+: 391.1816 [MH+]; found: 391.1824.
Data for 8: Isolated as
a
yellow solid; m.p. 140–1418C; 1H NMR
(400 MHz, CDCl3): d=13.71 (brs, 1H; OH), 8.86 (s, 1H; CHN), 7.83 (s,
1H; CHpy), 4.73 (s, 2H; CH2OH), 4.67 (dt, 2JHF =47.3, 4.8 Hz, 2H;
CH2F), 3.91 (dtd, 3JHF =27.9, 4.7, 1.2 Hz, 2H; CH2N), 2.46 (s, 3H; CH3),
2.02 ppm (brs, 1H; OH); 13C NMR (100 MHz, CDCl3): d=165.0 (CHN),
154.6 (Cpy), 151.0 (Cpy), 138.1 (Cpy(6)), 131.0 (Cpy), 119.8 (Cpy), 82.0 (d,
1JCF =171.2 Hz; CF), 60.7 (CH2OH), 59.7 (d, 2JCF =19.8 Hz; CCF),
2
19.0 ppm (CH3); 19F NMR (376 MHz, CDCl3): d=ꢀ222.9 ppm (tt, JFH
=
47.1, 27.9 Hz); IR (neat) n˜max =3126 m, 2836 (w), 1631 (s), 1403 (s), 1340
(m), 1294 (m), 1260 (m), 1211 (m), 1119 (w), 1085 (w), 1023 (s), 988 (w),
964 (w), 906 (w), 856 (s), 786 (w), 756 (w), 714 (m), 640 cmꢀ1w; HRMS
+
(ESI): m/z: calcd for C10H14FN2O2 213.1034 [MH+]; found: 213.1034.
Computational Details
[9] For selected examples, see a) D. OꢀHagan, C. Bilton, J. A. K.
Howard, L. Knight, D. J. Tozer, J. Chem. Soc. Perkin Trans. 2 2000,
605–607; b) C. R. S. Briggs, D. OꢀHagan, J. A. K. Howard, D. S.
Allen, D. OꢀHagan, D. J. Tozer, A. M. Z. Slawin, A. E. Goeta,
Gooseman, D. OꢀHagan, A. M. Z. Slawin, A. M. Teale, D. J. Tozer,
man, D. OꢀHagan, M. J. G. Peach, A. M. Z. Slawin, D. J. Tozer, R. J.
review see D. OꢀHagan, Chem. Soc. Rev. 2008, 37, 308–319; h) I.
Hyla-Kryspin, S. Grimme, S, Hruschka, G. Haufe, Org. Biomol.
[10] For examples from this laboratory see a) C. Sparr, W. B. Schweizer,
All calculations were done with Gaussian 09[17] using DFT. The M06–2X
hybrid meta-GGA exchange–correlation functional was used throughout,
which has been shown to yield superior accuracy not only for main-group
thermochemistry, but in particular for non-covalent interactions, includ-
ing dispersion and hydrogen bonding.[18] Even though such interactions
are not expected to be dominant in the systems studied here, they may
well influence conformational preference. We used standard Pople-style
basis sets, starting with 6-31+GACTHNUTRGNE(NUG d,p), in which the addition of diffuse
functions on non-hydrogen atoms enormously improves energetics when
using DFT methods, comparable to what is achieved with triple-z basis
sets.[19] Minima were re-optimized using 6-311G
ACHTUNGTRENNUNG
with 6-311+GACHTUNGTRENNUNG
tive energies was <1 kJmolꢀ1. Calculations in water solvent used the
IEF-PCM polarizable continuum model with UFF atomic radii for the
cavity construction. Non-electrostatic contributions to solvation were not
included (which corresponds to the default solvation treatment in Gaussi-
an 09). Default convergence criteria were applied for the SCF and in ge-
ometry optimizations. All stationary points were confirmed as minima by
a positive-definite Hessean. Values for rotational barriers were estimated
from the maxima of the torsion profiles.
Acknowledgements
[11] Selected crystallographic data for 6: Mr =196.181; orthorhombic
Pna21; a=10.3049(5), b=20.0536(12), c=4.4424(2) ꢁ; a=90.00, b=
90.00, g=90.008; fNCCF =ꢁ70.08.
We gratefully acknowledge generous financial support from the Alfred
Werner Foundation (assistant professorship to R.G.), the Roche Re-
search Foundation, Novartis AG (doctoral fellowships to C.S.), and the
ETH Zꢂrich.
[12] Selected crystallographic data for 7: Mr =390.458; orthorhombic
C2221; a=8.0748(2), b=15.9339(4), c=31.8928(8) ꢁ; a=90.00, b=
90.00, g=90.008; fNCCF =ꢀ74.28; polar space group; configuration of
the starting material known.
¯
[13] Selected crystallographic data for 8: Mr =212.224; triclinic P1; a=
[2] a) C. T. Walsh, Enzymatic Reaction Mechanisms, 2nd ed., W. H.
Freeman, San Fransisco, 1979; b) J. C. Vederas, H. G. Floss, Acc.
d) H. Hayashi, J. Biochem. 1995, 118, 463–473; e) A. C. Eliot, J. F.
Introduction to Enzyme and Coenzyme Chemistry, 2nd ed., Wiley-
Blackwell, New York, 2004, pp. 211–226.
7.166(2), b=11.489(3), c=12.575(3); a=96.917(14), b=89.939(14),
g=101.869(13)8; fNCCF =ꢁ67.0/ꢁ66.9;[a] triclinic P1; a=4.4723(1),
b=10.1486(1), c=11.9847(2) ꢁ; a=105.698(1), b=92.052(1), g=
96.745(1)8; fNCCF =67.08/ꢀ66.38.[b] [a] Centrosymmetric space group
with 2 symmetry independent molecules in the asymmetric unit.
[b] Polar space group with two symmetry independent molecules in
the unit cell, both gauche conformers observed.
8856
ꢃ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 8850 – 8857