however, a link between this target and the apoptotic
activity of 1 and 2 has yet to be established.6
R-aminomethoxime.4a Since both steroidal precursors
pass through the R-azidoketone stage, there are two coupl-
ing modes to the same product. The bottom line is that this
unsymmetrical pyrazine synthesis provides dependable
late-stage coupling of an exceptionally valuable pair of
3-ketosteroids with the expectation of excellent overall
yield and preservation of acid-labile spiroketal stereo-
chemistry. The average yield for the initial 59 cases
examined was 72%.
Using SAR studies as a guide,9 the C-25 position was
targeted, as it has shown tolerance to modification. Our
studies focused on use of an immunoaffinity fluorescent
(IAF) label,10 as this label has been shown to provide
effective probes without phenotypic modification and
modest loss in cell viability and activity.
Scheme 1. Synthesis of IAF-Labeled Fluorescent Probe 7
Figure 1. Structures of ritterazine B (1), cephalostatin 1 (2), 230-
deoxycephalostatin 1 (3), ritterostatin GN1N (4), and 25-epi-
ritterostatin hybrid GN1N (5).
Our ability to synthesize cephalostatin, ritterazine, and
hybrid analogues has been used to supply sufficient quan-
titiesofmaterialsfordetailedbiologicaland invivostudies.
For instance, the first-generation synthesis of 110 mg of
230-deoxycephalostatin 1 (3) was used to characterize their
apoptotic activity and evaluate the accompanying mito-
chondrial damage and cytosolic Ca2þ increase.7 These
studies have also shown that 3 engenders a 50ꢀ60% increase
in mouse lifespan in U87MG brain cancer xenografts.8 Syn-
thetic samples (from 245 mg total) of 25-epi-ritterostatin
GN1N (5) were further screened for in vitro activity against
multiple cancer cells lines of different tissue origins.3a,4a
Given our synthetic access, application of these materi-
als to prepare and evaluate fluorescent probes was a logical
next step. Our unsymmetrical pyrazine synthetic route
operates through a coupling of a R-azidoketone and a
Glycine IAF label 6a11 was coupled with 25-epi-ritterosta-
tin GN1N (5) at the C-25 position to deliver probe 7(Scheme1).
The same probe 7 was also obtained through a stepwise pro-
cedure involving an Fmoc-protected intermediate 8.
Using the MTT assay, probe 7 demonstrated an activity
of IC50 value of 79 ( 4 nM against HCT-116 cells.12 With
ꢀ
ꢀ
(5) (a) Rudy, A.; Lopez-Anton, N.; Dirsch, V. M.; Vollmar, A. M. J.
Nat. Prod. 2008, 71, 482–486. (b) Komiya, T.; Fusetani., T.; Matsunaga,
S.; Kubo, A.; Kaye, F. J.; Kelley, J. M.; Tamura, K.; Yoshida, M.;
Fukuoka, M.; Nakagawa, K. Cancer Chemother. Pharmacol. 2003, 51,
202–208.
(9) (a) LaCour, T. G.; Guo, C.; Ma, S.; Jeong, J. U.; Boyd, M. R.;
Matsunaga, S.; Fusetani, N.; Fuchs, P. L. Bioorg. Med. Chem. Lett.
1999, 9, 2587–2592. (b) Guo, C.; LaCour, T. G.; Fuchs, P. L. Bioorg.
Med. Chem. Lett. 1999, 9, 419–424.
(10) Yu, W. L.; Guizzunti, G.; Foley, T. L.; Burkart, M. D.; La Clair,
J. J. J. Nat. Prod. 2010, 73, 1659–1666.
(11) (a) Hughes, C. C.; MacMillan, J. B.; Gaudencio, S. P.; Fenical,
(6) Burgett, A. W.; Poulsen, T. B.; Wangkanont, K.; Anderson,
D. R.; Kikuchi, C.; Shimada, K.; Okubo, S.; Fortner, K. C.; Mimaki,
Y.; Kuroda, M.; Murphy, J. P.; Schwalb, D. J.; Petrella, E. C.; Cornella-
Taracido, I.; Schirle, M.; Tallarico, J. A.; Shair, M. D. Nat. Chem. Biol.
2011, 7, 639–647.
^
W.; La Clair, J. J. Angew. Chem., Int. Ed. 2009, 48, 728–732. (b)
Alexander, M. D.; Burkart, M. D.; Leonard, M. S.; Portonovo, P.;
ꢀ
Liang, B.; Ding, X.; Joullie, M. M.; Gulledge, B. M.; Aggen, J. B.;
(7) Unpublished results with Prof. Peng Huang (M. D. Anderson).
(8) (a) Unpublished studies with Dr. John Beutler (National Cancer
Institute). (b) Synthesis of 25-epi-ritterostatin GN1N will be reported in
due course.
Chamberlin, A. R.; Sandler, J.; Fenical, W.; Cui, J.; Gharpure, S. J.;
Polosukhin, A.; Zhang, H. R.; Evans, P. A.; Richardson, A. D.; Harper,
M. K.; Ireland, C. M.; Vong, B. G.; Brady, T. P.; Theodorakis, E. A.; La
Clair, J. J. ChemBioChem 2006, 7, 409–416.
Org. Lett., Vol. 13, No. 19, 2011
5335