Journal of the American Chemical Society
COMMUNICATION
3lꢀ3n in 82ꢀ91% yields and further generating 2-aminoalcohols
5lꢀ5n in situ in good yields (73ꢀ76%, entries 11ꢀ13). For
aminoalkynes 1i, 1j, and 1o14 bearing different amino groups, the
same reaction sequence afforded 2-oxoiminylamides 3oꢀ3q in
83ꢀ87% yields, further producing 2-aminoalcohol 5a in
71ꢀ81% yields (entries 14ꢀ16).
compounds: Xu, C.-F.; Xu, M.; Jia, Y.-X.; Li, C.-Y. Org. Lett. 2011,
13, 1556 and references therein.
(5) Gold-catalyzed alkyne oxidations using external oxidants to give
enones and four-membered heterocycles: (a) Ye, L.; Cui, L.; Zhang, G.;
Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (b) Ye, L.; He, W.; Zhang,
L. J. Am. Chem. Soc. 2010, 132, 8550. (c) Ye, L.; He, W.; Zhang., L.
Angew. Chem., Int. Ed. 2011, 50, 3236. (d) Vasu, D.; Hung, H.-H.;
Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011,
50, 6911.
(6) Gold-catalyzed oxidation of aminoalkynes: (a) Li, C.-W.; Pati,
K.; Lin, G.-Y.; Abu Sohel, S. M.; Hung, H.-H.; Liu, R.-S. Angew. Chem.,
Int. Ed. 2010, 49, 9891. (b) Davies, P. W.; Cremonesi, A.; Martin, N.
Chem. Commun. 2011, 47, 379. (c) Li, C.; Zhang, L. Org. Lett. 2011,
13, 1738.
(7) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
(8) Gold-catalyzed intramolecular cyclization of nitrone/alkynes
was first studied by Shin and co-workers, but no oxoamination products
2 were formed therein: Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int.
Ed. 2008, 47, 7040.
(9) In the presence of AuCl, the reaction of nitrosobenzenes with
phenylacetylenes produced 3-arylindoles, rather than oxoimination
products 3 as described in this work: Murru, S.; Gallo, A. A.; Srivastava,
R. S. ACS Catal. 2011, 1, 29.
(10) Selected examples of metal-catalyzed synthesis of 2-aminoalco-
hols from alkenes and metal-catalyzed aminohydroxylation of unfunc-
tionalized alkenes: (a) Sharpless, K. B.; Chong, A. O.; Oshima, J. J. Org.
Chem. 1976, 41, 177. (b) Desai, L. V.; Sanford, M. S. Angew. Chem., Int.
Ed. 2007, 46, 5737. (c) Liu, G.; Stahl, S. J. Am. Chem. Soc. 2006,
128, 7179. (d) Michaelis, D. J.; Shaffer, C. J.; Yoon, T. P. J. Am. Chem.
Soc. 2007, 129, 1866. (e) Williamson, K. S.; Yoon, T. J. Am. Chem. Soc.
2010, 132, 4570. (f) Alexanian, E. J.; Lee, C.; Sorenson, E. J. J. Am. Chem.
Soc. 2005, 127, 7690.
(11) Chemistry of ynamides: (a) DeKorver, K. A.; Li, H.; Lohse,
A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010,
110, 5064. (b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed.
2010, 49, 2840.
Before this work, very few instances of gold-catalyzed oxida-
tive 1,2-difunctionalizations of alkynes with external nucleophiles
were reported.47 Herein, we have developed two indepen-
dent routes for gold-catalyzed 1,2-difunctionalizations of amino-
alkynes15 using only external oxidants. In the presence of
P(t-Bu)2(o-biphenyl)AuSbF6, nitrones enable the oxoamination
of aminoalkynes 1 to form 2-aminoamides 2 that are then sub-
jected to NaBH4 reduction in situ to deliver 2-aminoalcohols 4.
Control experiments confirm the occurrence of α-carbonyl
carbenoids that are trapped instantly by the released imine in
the inner sphere. We subsequently discovered that nitrosobenzene
implements a novel gold-catalyzed alkyne/nitroso metathesis
to give 2-oxoiminylamides 3, and subsequent NaBH4 reduction
in situ delivered 2-aminoalcohols 5 with opposite regioselec-
tivity. With two oxidants, selective production of diversified 1,
2-difunctionalized products from a single substrate highlights
the significance of these catalytic reactions.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, char-
b
acterization of new compounds, and X-ray crystallographic data
of 3j. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
(12) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottl€ander, M.;
Skrydstrup, T. Org. Lett. 2009, 11, 4208.
Corresponding Author
(13) Crystallographic data of 3j are provided in the SI.
(14) For alkynyloxazolidinone 1o, its gold-catalyzed oxidation with
nitrone 8a gave dicarbonyl compound 12 exclusively (76%) via a
secondary oxidation of gold carbenoid A.4 Spectral data of 12 are
provided in the SI.
(15) For 1-hexyne and phenylacetylene, we exclusively recovered
these two alkynes for both nitrone and nitrosobenzene oxidations in
dichloroethane at room temperature, whereas we obtained a messy
mixture of products when the reactions were performed at 80 °C. These
results indicate that the amino group activates the oxidation of alkynes
with external oxidants.
’ ACKNOWLEDGMENT
The authors thank the National Science Council, Taiwan, for
supporting this work.
’ REFERENCES
(1) Recent review for α-carbonyl gold carbenoids: Xiao, J.; Li, X.
Angew. Chem., Int. Ed. 2011, 50, 7226.
(2) Reviews for gold catalysis: (a) Das, A.; Abu, S. M. A.; Liu, R.-S.
Org. Biomol. Chem. 2010, 8, 960. (b) Sohel, S. M. A.; Liu, R.-S. Chem. Soc.
Rev 2009, 38, 2269. (c) Arcadi, A. Chem. Rev. 2008, 108, 3266. (d)
Jimꢀenez-Nꢀu~nez, E.; Echavarren, A. M. Chem. Rev. 2008,
108, 3326–3350. (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
Rev. 2008, 108, 3351. (f) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
(3) Selected examples of intramolecular redox reactions of alkynes:
(a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b) Li,
G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156. (c) Davies, P. W.;
Albrecht, S. J.-C. Chem. Commun. 2008, 238. (d) Cuenca, A. B.;
ꢀ
ꢀ
Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledοs, A.; Medio-Simοn,
M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11, 4906. (e) Cui, L.; Zhang,
G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225. (f) Cui, L.; Peng, Y.;
Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (g) Jadhav, A. M.; Bhunia,
S.; Liao, H.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133. (h) Yeom, H.-S.;
Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew.
Chem., Int. Ed. 2010, 49, 1611.
(4) In intermolecular processes, metal-catalyzed oxidative 1,2-di-
functionalizations of alkynes were only reported for dicarbonyl
15375
dx.doi.org/10.1021/ja208150d |J. Am. Chem. Soc. 2011, 133, 15372–15375