4 S. C. Klein, Sol–Gel Optics, Processing and Applications, Kluwer
Academic Press, Boston, 1994.
5 C. Sanchez and F. Ribot, New J. Chem., 1994, 18(10), 1007–
1047.
The yellow-coloured pNA-xerogels were previously tested as
pigments for the colouration of dental composite materials based
on methacrylates which are commonly used for the restoration of
teeth.43 The mass of pigment required to obtain a desired col-
ouration using the organic–inorganic xerogels is reduced by 96%
compared to the formerly used pigment Yellow 53 (Lichtgelb
8G) resulting in improved optical properties of the composite
such as transparency as well as superior mechanical properties.44
6 Z. Yang, C. Xu, B. Wu, L. R. Dalton, S. Kalluri, W. H. Steier, Y. Shi
and J. H. Bechtel, Chem. Mater., 1994, 6(10), 1899–1901.
7 D. Avnir, Acc. Chem. Res., 1995, 28(8), 328–334.
8 U. Schubert, N. Huesing and A. Lorenz, Chem. Mater., 1995, 7(11),
2010–2027.
9 K. Yagi, S. Shibata, T. Yano, A. Yasumori, M. Yamane and
B. Dunn, J. Sol-Gel Sci. Technol., 1995, 4(1), 67–73.
10 F. Chaput, D. Riehl, J. P. Boilot, K. Cargnelli, M. Canva, Y. Levy
and A. Brun, Chem. Mater., 1996, 8(2), 312–314.
11 C. Sanchez and B. Lebeau, Pure Appl. Opt., 1996, 5(5), 689–699.
12 J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis,
J.-M. Lehn, B. Darracq, C. Marois and Y. Levy, Chem. Mater.,
1998, 10(7), 1945–1950.
Conclusions
Highly thermally and chemically stable, yellow-coloured xerogels
were synthesized by combination of nucleophilic aromatic
substitution reaction of 4-FNB with APS and a subsequently
induced sol–gel process with TEOS as co-condensing silica
source in a one-pot synthesis. Reaction parameters such as
temperature, reaction time, concentrations and sol–gel condi-
tions are systematically studied to optimize the conversion rate
and reproducibility. We also prove for the first time that the HF
formed during the SNAr-reaction readily reacts with the silanes
present in the reaction mixture, since it cannot be trapped by
acid–base reactions, and catalyzes the subsequent sol–gel
process. The materials can withstand temperatures of up to 200
ꢀC and strongly acidic pH-conditions without any loss of colour.
The chromophore is embedded in the silica matrix and therefore
not accessible to strong acids that immediately decolourize
a corresponding model compound by protonation. Further,
core–shell particles with solid silica cores and chromophoric
shells were produced. They exhibit the same dye content as our
conventional xerogels, but combine it with more desirable
monodisperse morphology and smaller particle diameters in the
range of 200 nm. Finally, two convenient methods to enhance the
colour intensity of the materials are presented. The main
approach of increasing the number of available amino groups in
the n-aminoalkyltrialkoxysilane leads to an increase in colour
intensity (although steric hindrance prohibits full conversion of
all amino groups) and enhanced chemical robustness, while other
physicochemical properties remain almost identical. On the other
hand, the far more obvious approach of decreasing the TEOS
amount used in the synthesis also increases the colour intensity,
but is accompanied by a drastic alteration of other properties
such as the specific surface area.
13 H. Jiang and A. K. Kakkar, J. Am. Chem. Soc., 1999, 121(15), 3657–
3665.
14 R. J. P. Corriu, Angew. Chem., 2000, 112(8), 1432–1455.
ꢀ
15 J. A. Reyes-Esqueda, A. Franco, M. Bizarro, J. Garcıa-Macedo,
M. Canva, B. Darracq, Y. Levy, K. Lahlil, F. Chaput and
J. P. Boilot, J. Sol-Gel Sci. Technol., 2003, 26(1), 1011–1016.
16 P. Gomez-Romero and C. Sanchez, Functional Hybrid Materials,
Wiley-VCH Verlag GmbH, Weinheim, 2004.
17 J. Bujdak and N. Iyi, J. Phys. Chem. B, 2006, 110(5), 2180–2186.
€
18 A. Seifert, K. Ladewig, P. Schonherr, K. Hofmann, R. Lungwitz,
I. Roth, A. Pohlers, W. Hoyer, G. Baumann, S. Schulze,
M. Hietschold, N. Moszner, P. Burtscher and S. Spange, J. Sol-Gel
Sci. Technol., 2010, 53(2), 323–341.
€
€
19 S. Spange, A. Seifert, H. Muller, S. Hesse and C. Jager, Angew.
Chem., Int. Ed., 2002, 41(10), 1729–1732.
€
€
20 A. Seifert, S. Spange, H. Muller, S. Hesse and C. Jager, J. Sol-Gel Sci.
Technol., 2003, 26(1), 77–81.
21 K. Schreiter, K. Hofmann, A. Seifert, A. Oehlke, K. Ladewig,
€
T. Ruffer, H. Lang and S. Spange, Chem. Mater., 2010, 22(9),
2720–2729.
22 I. Roth, F. Simon, C. Bellmann, A. Seifert and S. Spange, Chem.
Mater., 2006, 18(20), 4730–4739.
23 C. R. Morcombe and K. W. Zilm, J. Magn. Reson., 2003, 162(2), 479–
486.
24 R. Joseph, S. Zhang and W. T. Ford, Macromolecules, 1996, 29(4),
1305–1312.
ꢀ
25 D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calve, B. Alonso,
J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, Magn. Reson.
Chem., 2002, 40(1), 70–76.
26 C. E. S. Alvaro and N. S. Nudelman, J. Phys. Org. Chem., 2005, 18(8),
880–885.
27 H. Grube and H. Suhr, Chem. Ber., 1969, 102(5), 1570–1579.
28 J. Sauer and R. Huisgen, Angew. Chem., 1960, 72(9), 294–315.
29 C. Claude, B. Garetz, Y. Okamoto and S. Tripathy, Mater. Lett.,
1992, 14(5–6), 336–342.
30 J. M. Allen, S. L. Aprahamian, E. A. Sans and H. Shechter, J. Org.
Chem., 2002, 67(11), 3561–3574.
31 R. Tacke, J. Becht, A. Lopez-Mras, W. S. Sheldrick and A. Sebald,
Inorg. Chem., 1993, 32(12), 2761–2766.
32 R. Tacke, J. Becht, A. Lopez-Mras and J. Sperlich, J. Organomet.
Chem., 1993, 446(1–2), 1–8.
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) and the Fonds der Chemischen Industrie is gratefully
acknowledged. The authors thank M. Berger, S. Ebert, and D.
Boettger-Hiller for nitrogen adsorption measurements, G. Bau-
33 R. Tacke, A. Lopez-Mras, W. S. Sheldrick and A. Sebald, Z. Anorg.
Allg. Chem., 1993, 619(2), 347–358.
34 R. Tacke, J. Becht, O. Dannappel, R. Ahlrichs, U. Schneider,
W. S. Sheldrick, J. Hahn and F. Kiesgen, Organometallics, 1996,
15(8), 2060–2077.
€
mann and S. Schulze for TEM/SEM imaging, and P. Schonherr
35 A. Adima, C. Bied, J. Moreau and M. Wong Chi Man, Eur. J. Org.
Chem., 2004, (12), 2582–2588.
36 R. J. P. Corriu, C. Guerin, B. J. L. Henner and W. W. C. Wong Chi
Man, Organometallics, 1988, 7(1), 237–238.
for assistance with DSC/TGA measurements.
37 J. A. Deiters and R. R. Holmes, J. Am. Chem. Soc., 1990, 112(20),
7197–7202.
Notes and references
38 R. R. Holmes, Chem. Rev., 1990, 90(1), 17–31.
39 C. J. Brinker and G. W. Scherer, Sol–Gel Science: the Physics and
Chemistry of Sol–Gel Processing, Academic Press, San Diego, 6th
edn, 1995.
1 R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar and S. K. Tripathy,
Chem. Mater., 1992, 4(5), 972–975.
2 J. Kim, J. L. Plawsky, R. LaPeruta and G. M. Korenowski, Chem.
Mater., 1992, 4(2), 249–252.
40 G. Hartmeyer, C. Marichal, B. Lebeau, P. Caullet and J. Hernandez,
J. Phys. Chem. C, 2007, 111(18), 6634–6644.
3 F. Chaput, D. Riehl, Y. Levy and J. P. Boilot, Chem. Mater., 1993,
5(5), 589–591.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 3839–3852 | 3851