5
system after 25 parameter points. The total optimization was
achieved within 48 hours showing its high efficiency that could
not have been obtained without computer assistance (Table 5).
increasing the number of parameters, an even more detailed
ACCEPTED MANUSCRIPT
“map” of the reaction space could be drawn allowing the user to
choose from a variety of high-yielding parameter sets. The entire
optimization was achieved without human interaction as all
necessary manual interactions, such as probe collection,
recording of spectra and adjustment of flow rates were conducted
by integrated algorithms and control entities.
It becomes evident that there is a correlation between
conversion and benzophenone concentration. Usually, the lower
the benzophenone concentration, the higher the conversion. This
was either obtained by increasing the furan or by lowering the
benzophenone flow rate.
Furthermore, comparing the productivity of both optimal
parameter points from both flow setups, 0.37 mmolh-1 of product
3a for the 2-pump system and 0.35 mmolh-1 for the 1-pump
system could be obtained (according to eq. 1). At the same time,
a 36% reduction in irradiation time was achieved for the 2-pump
system (53 min) compared to the 1-pump system (83 min).
Acknowledgments
Technical assistance by Cornelia Vermeeren is very gratefully
acknowledged. The research leading to these results has received
funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ ERC
Grant Agreement No. 617044 (SunCatChem).
References
[1] a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem.
Rev. 2017, 117, 11796–11893; b) Lima, F.; Kabeshov, M. A.; Tran, D.
N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley,
S. V. Angew. Chem. Int. Ed. 2016, 55, 14085–14089; c) Rehm, T. H.
Chem. Eng. Technol. 2015, 39, 66–80; d) Su, Y. S.; Straathof, N. J. W.;
Hessel, V.; Noël, T. Chem. Eur. J. 2014, 20, 10562–10589; e) Garlets,
Z. J.; Nguyen, J. D.; Stephenson, C. J. Isr. J. Chem. 2014, 54, 351–
360; f) Oelgemoeller, M.; Chem. Eng. Technol. 2012, 35, 1144–1152;
g) Knowles, J. P.; Elliot, L. D.; Booker-Milburn, K. I. Beilstein J. Org.
Chem. 2012, 8, 2025–2052; h) Oelgemöller, M.; Shvydkiv, O.
Molecules 2011, 16, 7522–7550; i) Matsubara, H.; Hino, Y.; Tokizane,
M.; Ryu, I. Chem. Eng. J. 2011, 167, 567–571; j) Fuse, S.; Tanabe, N.;
Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Chem. Comm. 2010,
46, 8722–8724; k) Fukuyama, T.; Rahman, T.; Sato, M.; Ryu, I. Synlett
2008, 2008, 151–163; l) Sugimoto, A.; Sumino, Y.; Takagi, M.;
Fukuyama, T.; Ryu, I.; Tetrahedron Lett. 2006, 47, 6197–6200; m)
Andre, J. C.; Viriot, M. L.; Villermaux, J. Pure Appl. Chem. 1986, 58,
907–916.
Table 5: Self-optimization run for photoflow reactor.
Point
Flow rate
BP
Flow rate
Furana
flow rate
total
Conv
(%)
τ
(µL/min)
(µL/min)
(µL/min)
(min)
1
2
3
4
80
117
106
117
65
80
160
223
223
252
180
63
45
45
40
56
16
12
10
15
95
106
117
135
115
opt
[2] Fukuyama, T.; Hino, Y.; Kamata, N.; Ryu, I. Chem. Lett. 2004, 33,
1430–1431.
ac(benzophenone) = 0.1 M in furan; BP: benzophenone;
conversion by GC
[3] Bachollet, S.; Terao, K.; Aida, S.; Nishiyama, Y.; Kakiuchi, K.;
Oelgemöller, M. Beilstein J. Org. Chem. 2013, 9, 2015–2021.
[4] a) Fitzpatrick, D. E.; Battilocchio, C.; Ley, S. V. ACS Cent. Sci. 2016,
2, 131–138; b) Fitzpatrick, D. E.; Battilocchio, C.; Ley S. V. Org.
Process. Res. Dev 2016, 20, 386–394; c) Fabry, D. C.; Sugiono, E.;
Rueping, M. React. Chem. Eng. 2016, 1, 129–133; d) Fabry, D. C.;
Sugiono, E.; Rueping, M. Isr. J. Chem. 2013, 54, 341–350.
[5] McMullen, J. P.; Stone, M. T.; Buchwald, S. L.; Jensen, K. F. Angew.
Chem. Int. Ed. 2010, 49, 7076–7080.
ꢒ
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢇꢆꢉ [ꢊꢊꢂꢋ ℎꢌꢍ] = ꢅꢎꢏꢐꢎꢑ
∙
ꢔꢕꢖꢔꢗ ∙ ꢛ
(eq. 1)
ꢎꢏꢐꢎꢑ
ꢒ
ꢗꢘꢗꢙꢚ
C
subst : concentration of substrate
ꢜ : flow rate
[6] a) Parrott, A. J.; Bourne, R. A.; Akien, G. R.; Irvine, D. J.; Poliakoff,
M. Angew. Chem. Int. Ed. 2011, 123, 3872–3876; b) Bourne, R. A.;
Skilton, R. A.; Parrott, A. J.; Irvine, D. J.; Poliakoff, M. Org. Process
Res. Dev. 2011, 932–938.
Y: yield
It cannot be excluded that other combinations of both flow
rates may lead to optimal conversions. Since the algorithm is
only capable of identifying a local optimum, not the global one,
increasing the length of the starting triangle or starting from a
different starting point may result in a different parameter set.
However, since the initial optimization already identified a local
optimum, we were only interested in the question whether a
modification of setup and a more specified performance could
give rise to a more detailed and advanced optimization method.
As both reactor setups identified similar optima independently,
verification of both methods can be assumed. Nevertheless,
reasonable amounts of these biologically active motifs can now
be easily prepared using readily available hardware.
[7] a) Fréneau, M.; Hoffmann, N. J. Photochem. Photobiol. C: Photochem.
Rev. 2017, 33, 83-108; b) Ralph, M.; Ng, S.; Booker-Milburn, K. I.
Org. Lett., 2016, 18, 968–971; c) Nakano, M.; Nishiyama, Y.;
Tanimoto, H.;,Morimoto, T.; Kakiuchi, K. Org. Process Res. Dev.,
2016, 20, 1626–1632; d) Terao, K.; Nishiyama, Y.; Kakiuchi, K. J.
Flow Chem. 2014, 4, 35–39; e) Yavorskyy, A.; Shvydkiv, O.;
Hoffmann, N.; Nolan, K.; Oelgemoeller, M. Org. Lett., 2012, 14,
4342–4345; f) Fukuyama, T.; Kajihara, Y.; Hino, Y.; Ryu, I. J. Flow.
Chem. 2011, 1, 40–45.; g) The [2+2]-photocycloaddition in an
automated and computer controlled microreaction plant has been
reported: Freitag, A.; Dietrich, T.; Scholz, R. Proceedings of the 11th
International Conference on Microreaction Technology (IMRET 11),
Kyoto, Japan, 8–10 March 2010; pp. 24–25.
[8] Paternó, E.; Chieffi, G. Gazz. Chim. Ital. 1909, 39, 341.
[9] Büchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76,
4327–4331.
[10] Schenck, G. O.; Hartmann, W.; Steinmetz, R. Chem. Ber. 1963, 96,
498–508.
In summary, we have illustrated the development of a [2+2]
photocyclization reaction of benzophenone and furan yielding
biologically active and important structural motifs tolerating a
broad scope of different educts. Starting from batch-type reactor
setups, modern flow-setups in combination with advanced self-
optimization methods led to identification of parameter sets
which show excellent conversions and yields for the desired
oxetanes. By changing to a 2-reservoir reactor system and thus
[11] a) Griesbeck, A. G.; Bondock, S.; Cygon, P. J. Am. Chem. Soc. 2003,
125, 9016–9017; b) Griesbeck, A. G.; Bondock, S.; Gudipati, M. S.
Angew. Chem. Int. Ed. 2001, 40, 4684–4687; c) Griesbeck, A. G.;
Buhr, S.; Fiege, M.; Schmickler, H.; Lex, J. J. Org. Chem. 1998, 63,
3847–3854; d) Griesbeck, A. G.; Stadtmüller, S. Chem. Ber. 1990, 123,
357–362.
[12] Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186–4188.