M. Ayaz et al. / Tetrahedron Letters 52 (2011) 4821–4823
4823
Table 3
Reactivity domain for Petasis/deprotection/cyclodehydration/oxidation protocola
Entry
R1
R2
R3
Yield (%) (4a–l)
Yield (%) (5a–l)
1
2
3
4
5
6
7
8
9
H
H
H
H
H
H
H
H
H
H
CH3
CH3
4-F-Ph
4-CF3-Ph
Ph
2,4,6-tri-Me-Ph
4-CF3-Ph
Ph
4-Me-Ph
4-Me-Ph
3-F-Ph
57 (4a)
49 (4b)
48 (4c)
0 (4d)
71 (4e)
39 (4f)
63 (4g)
0 (4h)
83 (4i)
87 (4j)
45 (4k)
24 (4l)
98 (5a)
92 (5b)
77 (5c)
nd (5d)
91 (5e)
nd (5f)
85 (5g)
nd (5h)
98 (5i)
81 (5j)
93 (5k)
35 (5l)
2-MeO-Ph
2-Naphthyl
trans-b-Styryl
2-MeO-Ph
4-Me-Ph
2,4,6-tri-F-Ph
3-CF3-Ph
2-Naphthyl
2,4,6-tri-F-Ph
Ph
2,4,6-tri-Me-Ph
Ph
4-CF3-Ph
4-CF3-Ph
Ph
10
11
12
a
All the reactions were carried out at a 1 mmol scale and isolated yields are reported. [Note: nd = not determined].
Pharm. Res. 2003, 26, 107–113; (d) Nasr, M. N. A. Arch. Pharm. Med. Chem. 2002,
8, 389–394; (e) El-Hawash, S. A.; Habib, N. S.; Fanaki, N. H. Pharmazie 1999, 54,
808–815; (f) El-Gendy, A. A.; El-Meligie, S.; El-Ansary, A.; Ahmedy, A. M. Arch.
Pharm. Res. 1995, 18, 44–47.
microwave makes this process more attractive since the reaction
time has been considerably diminished for a usual Petasis reaction.
Current efforts are focusing on optimizing the routes to additional
chemotypes of pharmacological importance.
12. (a) Rangisetty, J. B.; Gupta, C. N. V. H. B.; Prasad, A. L.; Srinivas, P.; Sridhar, N.;
Parimoo, P.; Veeranjaneyulu, A. Pharm. Pharmacol. 2001, 53, 1409–1413; (b)
Crowther, A. F.; Curd, F. H. S.; Davey, D. G.; Stacey, G. J. J. Chem. Soc. 1949,
1260–1262.
Acknowledgment
13. Tandon, V. K.; Yadav, D. B.; Maurya, H. K.; Chaturvedi, A. K.; Shukla, P. K. Bioorg.
Med. Chem. 2006, 14, 6120–6126; Sanna, P.; Carta, A.; Loriga, M.; Zanetti, S.;
Sechi, L. Farmaco 1999, 54, 1169–1177.
14. Ries, U. J.; Priekpe, H. W.; Havel, N. H.; Handschuh, S.; Mihm, G.; Stassen, J. M.;
Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2297–2302.
15. Toshima, K.; Kimura, T.; Takano, R.; Ozawa, T.; Ariga, A.; Shima, Y.; Umezawa,
K.; Matsumura, S. Tetrahedron 2003, 59, 7057–7066.
Wewould like to thank the Office of theDirector, NIH, and theNa-
tional Institute of Mental Health for funding (1RC2MH090878-01).
References and notes
16. Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem.
2001, 11, 2238–2243.
17. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-
Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E.
Bioorg. Med. Chem. Lett. 2005, 15, 761–764.
18. Using 4-methylphenyl boronic acid, phenyl glyoxaldehyde and N-Boc-
ethylenediamine gave a complex mixture from the Petasis reaction with a
negligible amount of the desired product. Similarly in Table 3, entry 3,
replacing phenyl glyoxaldehyde with methyl glyoxaldehyde showed only 23%
of the desired Petasis product: none of the reactions was considered for
purification or subsequent deprotection/cyclization steps.
19. General procedure for preparation of 5c: One millimolar of each diamine,
glyoxaldehyde and boronic acid were taken into a microwave vial already
equipped with a magnetic bar. 1 mL of dichloromethane was added to the
system followed by heating it at 120 °C for 15 min. The crude Petasis product
was then directly loaded to an ISCO™ purification system and using
ethylacetate/hexane as eluent (0–100% gradient over 25 min) the products
were purified. A weighed out amount of Petasis product (0.10–0. 30 mmol) was
then subjected to 1–2 mL of 20% TFA in dichloromethane. The reaction was
stirred for ꢀ18 h at room temperature, evaporated in vacuo and crude material
purified via chromatography (ISCO™) to afford the desired product (77% yield)
as a white solid. Quinoxaline 5c: Rf 0.55 (hexane/AcOEt 8:2). 1H NMR (400 MHz,
CDCl3): d = 8.17–8.21 (m, 2H), 7.79–7.82 (m, 2H), 7.50–7.54 (m, 2H), 7.21–7.39
(m, 6H), 7.04–7.09 (m, 1H). 13C NMR (100 MHz, CDCl3): d = 163.8, 161.2, 153.1,
141.3, 140.9, 138.6, 130.3, 130.1, 129.8, 129.7, 129.6, 129.2, 129.2, 129.0, 128.4,
125.7, 116.9, 116.7, 115.9, 115.7. ESI 301 (MH+).
1. Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583–586.
2. Bloch, R. Chem. Rev. 1998, 98, 1407–1438.
3. Matteson, D. S. Stereodirected Synthesis with Organoboranes; Springer: Berlin,
1995.
4. Wallace, D. J.; Chen, C. Y. Tetrahedron Lett. 2002, 43, 6987–6990.
5. Petasis, N. A.; Patel, Z. D. Tetrahedron Lett. 2000, 41, 9607–9611.
6. Naskar, D.; Roy, A.; Seibel, W. L.; Portlock, D. E. Tetrahedron Lett. 2003, 44,
6297–6300.
7. Grigg, R.; Sridharan, V.; Thayaparan, A. Tetrahedron Lett. 2003, 44, 9017–9019.
8. Pye, P. J.; Rossen, K.; Weissman, S. A.; Maliakai, A.; Reamer, R. A.; Ball, R.; Tsou,
N. N.; Volante, R. P.; Reider, P. J. Chem. Eur. J. 2002, 8, 1372–1376.
9. (a) Hulme, C.; Tang, S.; Burns, C.; Labaudiniere, R. J. Org. Chem. 1998, 63, 8021–
8023; (b) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51–80; (c) Hulme, C.;
Nixey, T. Curr. Opin. Drug Disc. Today 2003, 6, 921–929; (d) Xu, Z.; Dietrich, J.;
Shaw, A. Y.; Hulme, C. Tetrahedron Lett. 2010, 51, 4566–4569; (e) Gunawan, S.;
Nichol, G. S.; Chappeta, S.; Dietrich, J.; Hulme, C. Tetrahedron Lett. 2010, 51,
4689–4692; (f) Dietrich, J.; Kaiser, C.; Meurice, N.; Hulme, C. Tetrahedron Lett.
2010, 51, 3951–3955; (g) Hulme, C.; Lee, Y.-S.; Chappetta, S.; Dietrich, J.
Tetrahedron Lett. 2009, 50, 1939–1942; (h) Hulme, C.; Chappetta, S.; Dietrich, J.
Tetrahedron Lett. 2009, 50, 4054–4057.
10. Hulme, C.; Bienayme, H.; Nixey, T.; Chenera, B.; Jones, W.; Tempest, P.; Smith,
A. Methods in Enzymology; Elsevier Inc: New York, 2003. vol. 369, pp. 469–496
(& references therein).
11. (a) Ganapaty, S.; Ramalingam, P.; Rao, C. B. Indian J. Heterocycl. Chem. 2007, 16,
283–286; (b) Refaat, H. M.; Moneer, A. A.; Khalil, O. M. Arch. Phram. Res. 2004,
27, 1093–1098; (c) Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. M. Arch.