Journal of Agricultural and Food Chemistry
ARTICLE
Funding Sources
(15) Brunet, A.; Datta, S. R.; Greenberg, M. E. Transcription-
dependent and -independent control of neuronal survival by the
PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 2001, 11, 297–305.
(16) Cross, D. A.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.;
Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin
mediated by protein kinase B. Nature 1995, 378, 785–789.
(17) Woodgett, J. R. Molecular cloning and expression of glycogen
synthase kinase-3/factor A. EMBO J. 1990, 9, 2431–2438.
(18) Frame, S.; Cohen, P.; Biondi, R. M. A common phosphate
binding site explains the unique substrate specificity of GSK3 and its
inactivation by phosphorylation. Mol. Cell 2001, 7, 1321–1327.
(19) Fang, X.; Yu, S. X.; Lu, Y.; Bast, R. C., Jr.; Woodgett, J. R.;
Mills, G. B. Phosphorylation and inactivation of glycogen synthase
kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
11960–11965.
This research was supported by a Korea Research Foundation
(KRF) grant funded by the Korean government (MEST 2010-
0019306, 2009-0072028). D.-Y.Y. is partially supported by the
Priority Research Centers Program (2009-0093824) and the
National R&D Program for Cancer Control, Ministry for Health,
Welfare, and Family aAffairs, Republic of Korea (0920080).
’ ACKNOWLEDGMENT
The synthetic naringenin derivative N101-43 was the
generous gift of Professor K. Y. Jung, Department of Bio-
chemical Engineering, Gangneung-Wonju National University
(Gangneung, Korea).
(20) Goode, N.; Hughes, K.; Woodgett, J. R.; Parker, P. J. Differ-
ential regulation of glycogen synthase kinase-3 β by protein kinase C
isotypes. J. Biol. Chem. 1992, 267, 16878–16882.
’ ABBREVIATIONS USED
(21) Aparicio, I. M.; Garcia-Herreros, M.; Fair, T.; Lonergan, P.
Identification and regulation of glycogen synthase kinase-3 during
bovine embryo development. Reproduction 2010, 140, 83–92.
(22) Galluzzo, P.; Marino, M. Nutritional flavonoids impact on
nuclear and extranuclear estrogen receptor activities. Genes Nutr. 2006,
1, 161–176.
(23) Dixon, R. A.; Steele, C. L. Flavonoids and isoflavonoids ꢀ a
gold mine for metabolic engineering. Trends Plant Sci. 1999, 4, 394–400.
(24) Bors, W.; Michel, C.; Stettmaier, K. Antioxidant effects of
flavonoids. Biofactors 1997, 6, 399–402.
(25) Heijnen, C. G.; Haenen, G. R.; Oostveen, R. M.; Stalpers, E. M.;
Bast, A. Protection of flavonoids against lipid peroxidation: the structure
activity relationship revisited. Free Radical Res. 2002, 36, 575–581.
(26) Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L.
Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004,
79, 727–747.
(27) Jin, C. Y.; Park, C.; Hwang, H. J.; Kim, G. Y.; Choi, B. T.; Kim,
W. J.; Choi, Y. H. Naringenin up-regulates the expression of death
receptor 5 and enhances TRAIL-induced apoptosis in human lung
cancer A549 cells. Mol. Nutr. Food Res. 2011, 55, 300–309.
(28) Lee, J. H.; Park, C. H.; Jung, K. C.; Rhee, H. S.; Yang,
C. H. Negative regulation of β-catenin/Tcf signaling by naringenin in
AGS gastric cancer cell. Biochem. Biophys. Res. Commun. 2005, 335,
771–776.
NSCLC, non-small-cell lung cancer; DMSO, dimethyl sulfoxide;
N101-3, 5,7,40-trihydroxy flavanone N-phenyl hydrazone; N101-
43, 5-hydroxy-7,40-diacetyloxyflavanone-N-phenyl hydrazone-
PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered
saline; PI, propidium iodide; PVDF, polyvinylidene difluoride;
PI3K, phosphatidylinositol 3-kinase; SDS-PAGE, sodium dode-
cyl sulfateꢀpolyacrylamide gel electrophoresis.
’ REFERENCES
(1) Jemal, A.; Thomas, A.; Murray, T.; Thun, M. Cancer statistics.
CA Cancer J. Clin. 2002, 52, 23–47.
(2) Lee, E. R.; Kang, Y. J.; Choi, H. Y.; Kang, G. H.; Kim, J. H.; Kim,
B. W.; Han, Y. S.; Nah, S. Y.; Paik, H. D.; Park, Y. S.; Cho, S. G. Induction
of apoptotic cell death by synthetic naringenin derivatives in human lung
epithelial carcinoma A549 cells. Biol. Pharm. Bull. 2007, 30, 2394–2398.
(3) Herbst, R. S.; Heymach, J. V.; Lippman, S. M. Lung cancer.
N. Engl. J. Med. 2008, 359, 1367–1380.
(4) Hengartner, M. O. The biochemistry of apoptosis. Nature 2000,
407, 770–776.
(5) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell
2000, 100, 57–70.
(6) Evan, G. I.; Vousden, K. H. Proliferation, cell cycle and apoptosis
(29) Park, J. H.; Jin, C. Y.; Lee, B. K.; Kim, G. Y.; Choi, Y. H.; Jeong,
Y. K. Naringenin induces apoptosis through downregulation of Akt and
caspase-3 activation in human leukemia THP-1 cells. Food Chem.
Toxicol. 2008, 46, 3684–3690.
(30) Sabarinathan, D.; Mahalakshmi, P.; Vanisree, A. J. Naringenin
promote apoptosis in cerebrally implanted C6 glioma cells. Mol. Cell.
Biochem. 2010, 345, 215–222.
(31) Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.;
Ishikawa, M. Naringenin-induced apoptosis via activation of NF-kB and
necrosis involving the loss of ATP in human promyeloleukemia HL-60
cells. Toxicol. Lett. 2006, 166, 131–139.
(32) Lee, E. J.; Kim, D. I.; Kim, W. J.; Moon, S. K. Naringin inhibits
matrix metalloproteinase-9 expression and AKT phosphorylation in
tumor necrosis factor-α-induced vascular smooth muscle cells. Mol.
Nutr. Food Res. 2009, 53, 1582–1591.
(33) Lim, S. C.; Duong, H. Q.; Choi, J. E.; Parajuli, K. R.; Kang, H. S.;
Han, S. I. Implication of PI3K-dependent HSP27 and p53 expression in
mild heat shock-triggered switch of metabolic stress-induced necrosis to
apoptosis in A549 cells. Int. J. Oncol. 2010, 36, 387–393.
(34) Ji, J.; Wernli, M.; Mielgo, A.; Buechner, S. A.; Erb, P. Fas-ligand
gene silencing in basal cell carcinoma tissue with small interfering RNA.
Gene Ther. 2005, 12, 678–684.
in cancer. Nature 2001, 411, 342–348.
(7) Ashkenazi, A.; Dixit, V. M. Death receptors: signaling and
modulation. Science 1998, 281, 1305–1308.
(8) Thornberry, N. A.; Rano, T. A.; Peterson, E. P.; Rasper, D. M.;
Timkey, T.; Garcia-Calvo, M.; Houtzager, V. M.; Nordstrom, P. A.; Roy,
S.; Vaillancourt, J. P.; Chapman, K. T.; Nicholson, D. W. A combinatorial
approach defines specificities of members of the caspase family and
granzyme B. Functional relationships established for key mediators of
apoptosis. J. Biol. Chem. 1997, 272, 17907–17911.
(9) Walczak, H.; Krammer, P. H. The CD95 (APO-1/Fas) and the
TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 2000, 256, 58–66.
(10) Fulda, S.; Debatin, K. M. Extrinsic versus intrinsic apoptosis
pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798–4811.
(11) Kischkel, F. C.; Hellbardt, S.; Behrmann, I.; Germer, M.;
Pawlita, M.; Krammer, P. H.; Peter, M. E. Cytotoxicity-dependent
APO-1 (Fas/CD95)-associated proteins form a death-inducing signal-
ing complex (DISC) with the receptor. EMBO J. 1995, 14, 5579–5588.
(12) Scaffidi, C.; Fulda, S.; Srinivasan, A.; Friesen, C.; Li, F.;
Tomaselli, K. J.; Debatin, K. M.; Krammer, P. H.; Peter, M. E. Two
CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998, 17, 1675–1687.
(13) Green, D. R.; Kroemer, G. The pathophysiology of mitochon-
drial cell death. Science 2004, 305, 626–629.
(14) Chan, T. O.; Rittenhouse, S. E.; Tsichlis, P. N. AKT/PKB and
other D3 phosphoinositide-regulated kinases: kinase activation by
phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem.
1999, 68, 965–1014.
(35) Boise, L. H.; Gonzalez-Garcia, M.; Postema, C. E.; Ding, L.;
Lindsten, T.; Turka, L. A.; Mao, X.; Nunez, G.; Thompson, C. B. bcl-x, a
bcl-2-related gene that functions as a dominant regulator of apoptotic
cell death. Cell 1993, 74, 597–608.
10296
dx.doi.org/10.1021/jf2017594 |J. Agric. Food Chem. 2011, 59, 10286–10297