4994
R. K. Dempster, F. A. Luzzio / Tetrahedron Letters 52 (2011) 4992–4995
(c) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Calvert, A. H.; Curtin, N. J.; Farnie,
H
Ar
J.; Golding, B. T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Kallblad, P.; Kemp, S. J.;
Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan,
K.; Willems, H. M. G.; Lunec, J. Bioorg. Med. Chem. Lett. 2005, 15, 1515–1520.
5. Shangary, S.; Wang, S. Clin. Cancer. Res. 2008, 14, 5318–5324; Shangary, S.;
Wang, S. Ann. Rev. Pharmacol. Toxicol. 2009, 49, 223–241.
CrO3Cl-bipyH+
+
N
O
6. (a) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.;
Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004,
303, 844–848; (b) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.;
Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.; Calvo, R. R.;
Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G.
R.; Zhang, M.; Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.;
Spurlino, J. C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. J. Med.
Chem. 2005, 48, 090–912; (c) Shangary, S.; Ding, K.; Qiu, S.; Nikolovska-Coleska,
Z.; Bauer, J. A.; Liu, M.; Wang, G.; Lu, Y.; McEachern, D.; Bernard, D.; Bradford, C.
R.; Carey, T. E.; Wang, S. Mol. Cancer Ther. 2008, 7, 1533–1542.
7. (a) Kitching, M. S.; Clegg, W.; Elsegood, M. R. J.; Griffin, R. J.; Golding, B. T.
Synlett 1999, 997–999; (b) Willems, H. M. G.; Kallblad, P. ; Hardcastle, I. R.;
Griffin, R. K.; Golding, B. T.; Lunec, J.; Noble, M. E. M. Newell, D. R.; Calvert, A. H.
US0261917A1, 2008.
8. (a) Luzzio, F. A. In Science of Synthesis Compounds with Four and Three Carbon
Heteroatom Bonds; Weinreb, S. M., Ed.; Thieme: Stuttgart, 2005; pp 259–324.
Vol. 21; (b) Jeong, I. Y.; Lee, W. S.; Goto, S.; Sano, S.; Shiro, M.; Nagao, Y.
Tetrahedron 1998, 54, 14437–14454.
Ar
N
+
+
HOCrO2Cl=bpyH+
O
O
HCrO3Cl
Cl
O+
Cr
O
H
HO
Ar
N
Ar
N
O
O
Scheme 3. Proposed benzylic oxidation mechanism.
9. Luzzio, F. A.; O’Hara, L. C. Synthetic Commun. 1990, 20, 3223–3234.
10. 3-Hydroxy-2-propylisoindolin-1-one 2. To a magnetically-stirred solution of n-
propylphthalimide 1 (1.36 g, 7.18 mmol) dissolved in THF/water (9:1, 130 mL)
was added freshly-prepared aluminum amalgam. The amalgam was prepared
by cutting food-grade aluminum foil (429 mg) into 8 Â 50 mm strips, winding
in the formation of the benzylic iminium/carbonium ion and re-
duced oxochromium (IV) species.20c,d Interception of the interme-
diate cationic species with excess chlorochromate (VI) ion then
affords the unstable chromate ester. Hydrolysis or otherwise cleav-
age of the chromate ester during workup and isolation then results
in hydroxylated products. In summary, we have detailed an effec-
tive and straightforward route to a set of core structures represen-
tative of isoindolinone-based MDM2-p53 inhibitors. Within our
synthetic route, we both introduced an intermolecular iminium
ion-mediated arylation of a pre-formed phthalimide and enlisted
the reactivity of oxochromium (VI) in a rare benzylic oxidation.
The arylation employed substituted benzene co-reactants having
typical electron-donating or electron withdrawing substitution
thereby allowing for a range in the diversity of the intermediates.
The BPCC-mediated oxidation was selective for the benzylic
methine which resulted in hydroxylated products suitable for fur-
ther elaboration and submission as candidates for MDM2-p53
inhibitory evaluation.
the strips about
a glass rod to make coils, then degreasing the coils by
immersing in diethyl ether. Using tweezers, each aluminum coil was then
immersed for exactly 20 s in 2% aqueous mercuric chloride, washed quickly by
dipping into diethyl ether, then added to the reaction flask containing the
solution of 1. Stirring was continued for 2 h during which time the shiny
aluminum coils became macerated with evolution of hydrogen and the
reaction mixture changed to a gray suspension. The reaction mixture was
then vacuum-filtered through a Celite-packed filter funnel (60 mm) while
washing with ethyl acetate. The solvents were then removed by rotary
evaporation followed by removal of the aqueous component under high
vacuum. The white residue was flash-column chromatographed (hexane/
EtOAc, 4:1) which provided 1.13 g (82%) of hydroxylactam
2 as a white
crystalline solid: mp 93–95 °C; Rf 0.28 (hexane/EtOAc, 1:1); FTIR: 3256, 2961,
1664, 1406, 1062 cmÀ1 1H NMR (400 MHz, CDCl3) d: 7.58 (m, 3H), 7.44 (dd,
;
1H), 5.75 (s, 1H), 3.44 (m, 1H), 3.25 (s, 1H), 1.64 (m, 2H), 0.91 (t, 3H); 13C NMR
(100 MHz, CDCl3) d: 167.6, 144.0, 131.97, 131.34, 129.42, 123.22, 122.92,
81.50, 40.58, 21.39, 11.34; HRMS calcd for C11H14NO2 (M+H)+ 192.1024, Found
192.1020.
11. (a) Horii, Z.-I.; Iwata, C.; Tamura, Y. J. Org. Chem. 1961, 26, 2273–2276; (b)
Bennett, D. J.; Blake, A. J.; Cooke, P. A.; Godfrey, C. R. A.; Pickering, P. L.;
Simpkins, N. S.; Walker, M. D.; Wilson, C. Tetrahedron 2004, 60, 4491–4511.
12. For example, see: Luzzio, F. A.; Zacherl, D. P. Tetrahedron Lett. 1998, 39, 2285–
2288; Deniau, E.; Enders, D. Tetrahedron Lett. 2000, 41, 2347–2350; Comins, D.
L. Tetrahedron Lett. 2005, 46, 5639–5642.
13. Decroix, B.; Netchitaïlo, P. J. Heterocyclic Chem. 2000, 37, 827–830; Hucher, N.;
Decroix, B.; Daïch, A. J. Org. Chem. 2001, 66, 4695–4703.
14. Barili, P. G.; Scartoni, V. J. Heterocyclic Chem. 1985, 22, 1199–1202.
Acknowledgments
We acknowledge the support of this work through a University
of Louisville Summer Research Fellowship to RKD. Support of the
high resolution mass spectral facility at the University of Louisville
through a NSF-EPSCOR grant is gratefully acknowledged. The use of
the Texas A&M University/Laboratory for Biological Mass Spec-
trometry and Dr. Vanessa Santiago are acknowledged.
15. General
Procedure.
3-Aryl-2-n-propylisoindolinones
3a–d,
Table
1:
Hydroxylactam
2
(0.5 mmol) was dissolved in benzene (for 3a) or the
appropriate substituted benzene (for 3b–d) (7–9 mmol) co-reactant while
warming (52–55 °C, oil bath) under a nitrogen atmosphere while stirring. To
the clear solution was added trifluoromethanesulfonic acid (2.0 mmol) by
syringe which produced a light-yellow to orange-yellow color depending on
the aryl co-reactant. After 2–8 h, the color was somewhat discharged and
stirring and heating under N2 was continued. The co-reactant/solvent was then
removed under high vacuum and the oily residue was then flash-column
chromatographed (hexane/ethyl acetate, 4:1) to provide the aryl-substituted
isoindolinones 3a–d. 3-Phenyl-2-propylisoindolin-1-one 3a. Rf 0.36 (hexane/
References and notes
1. Presented by R.K.D. at the 141st National Meeting of the American Chemical
Society, Anaheim, California, March 29, 2011; ORGN 557.
2. Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron 2007, 63,
2664–2669; Daïch, A.; Marchalin, S.; Pigeon, P.; Decroix, B. Tetrahedron Lett.
1998, 39, 9187–9190; Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.;
Ishibashi, H. Org. Lett. 2005, 7, 4389–4390; Fang, F. G.; Feigelson, G. B.;
Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 2743–2746; Alonso, R.; Castedo, L.;
Dominguez, D. Tetrahedron Lett. 1985, 26, 2925–2928; Kim, G.; Jung, P.; Tuan, L.
A. Tetrahedron Lett. 2008, 49, 2391–2392.
3. (a) Stuk, T. L.; Assink, B. K.; Bates, R. C.; Erdman, D. T.; Fedij, V.; Jennings, S. M.;
Lassig, J. A.; Smith, R. J.; Smith, T. L. Org. Proc. Res. Dev. 2003, 7, 851–855; (b)
Luzzio, F. A.; Zacherl, D. P. Tetrahedron Lett. 1999, 40, 2087–2090; (c) Luzzio, F.
A.; Mayorov, A. V.; Ng, S. S. W.; Kruger, E. A.; Figg, W. D. J. Med. Chem. 2003, 46,
3793–3799; (d) Norman, M.; Minick, D. J.; Rigdon, G. C. J. Med. Chem. 1996, 39,
149–157; (e) Luci, D. K.; Lawson, E. C.; Ghosh, S.; Kinney, W. A.; Smith, C. E.; Qi,
J.; Wang, Y.; Minor, L. K.; Marynoff, B. E. Tetrahedron Lett. 2009, 50, 4958–4961.
4. (a) Riedinger, C.; Endicott, J. A.; Kemp, S. J.; Smyth, L. A.; Watson, A.; Valeur, E.;
Golding, B. T.; Griffin, R. J.; Hardcastle, I. R.; Noble, M. E.; McDonnell, J. M. J. Am.
Chem. Soc. 2008, 130, 16038–16044; (b) Hardcastle, I. R.; Ahmed, S. U.; Atkins,
H.; Farnie, G.; Golding, B. T.; Grifin, R. J.; Guyenne, S.; Hutton, C.; Kallblad, C.;
Kemp, S. J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Norhten, J. S.; Reid, R. J.;
Saravanan, K.; Willems, H. M. G.; Lunec, J. J. Med. Chem. 2006, 49, 6209–6221;
EtOAc, 4:1); mp 92–93 °C; FTIR: 2963, 2869, 1690, 1468, 1404 cmÀ1 1H NMR
;
(400 MHz, CDCl3) d: 7.87 (dd, 1H, J = 3.6, 5.6 Hz), 7.42 (m, 2H), 7.32 (m, 3H),
7.12 (m. 3H), 5.42 (s, 1H), 3.86 (m, 1H), 2.83 (m, 1H), 1.56 (m, 2H), 0.85 (t, 1H,
J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 168.62, 146.23, 137.13, 131.69,
131.59, 129.06, 128.59, 128.23, 127.51, 123.51, 122.97, 64.37, 41.81, 21.52,
11.34; HRMS calcd for C17H18NO (M+H)+ 252.1388, Found: 252.1380. 2-Propyl-
3-p-tolylisoindolin-1-one 3b. Mp 118–120 °C; Rf 0.30 (hexane/EtOAc, 2:1); FTIR
2963, 2873, 1693, 1467, 1402, 1092 cmÀ1 1H NMR (400 MHz, CDCl3) d: 7.87
;
(m, 1H), 7.42 (m, 2H), 7.14 (m, 1H, overlap), 7.13 (d, 2H, J = 7.2 Hz), 7.00 (d, 2H,
J = 8 Hz), 5.4 (s, 1H), 3.85 (m, 1H), 2.82 (m, 1H), 2.32 (s, 3H), 1.55 (m, 2H), 0.87
(t, 3H, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 168.57, 146.4, 138.44, 134.02,
131.72, 131.54. 129.73, 128.15, 127.45, 123.46, 122.94, 64.15, 41.73, 21.51,
21.14, 11.33; HRMS calcd for C18H20NO (M+H)+ 266.1545, Found: 266.1550. 3-
(4-Methoxyphenyl)-2-propylisoindolin-1-one 3c. (syrup) Rf 0.48 (hexane/EtOAc,
1:1); FTIR: 2963, 1693, 1612, 1512, 1404, 1246 cmÀ1 1H NMR (400 MHz,
;
CDCl3) d: 7.87 (m, 1H), 7.41 (m, 2H), 7.14 (m, 1H), 7.02 (d, 2H, J = 8.6 Hz), 6.84
(d, 2H, J = 8.6 Hz), 5.38 (s, 1H), 3.83 (m, 1H), 3.78 (s, 3H), 2.81 (m, 1H), 1.55 (m,
1H), 0.86 (t, 3H, J = 7.6 Hz); 13C NMR (100 MHz, CDCl3) d: 168.42, 159.78,
146.51, 131.55, 131.4, 128.78, 128.11, 127.85, 123.32, 122.99, 121.05, 114.40,