5072
W. Li et al. / Tetrahedron Letters 52 (2011) 5070–5072
O
O
O
O
Bayer-Villiger
Oxidation
Isomerization
hydrolysis
O
OH
33
3
HO
7
HO
O
H
5
6
2
Ozonolysis
OMe
OMe O
OMe
OOH
10
O
H+
H2O2
Wittig
Bayer-Villiger
Oxidation
O
17
O
9
H
H
11
3
8
Scheme 2. Proposed reaction intermediates.
CDCl3): d 6.39ꢀ5.82 (m, 4 H), 5.52ꢀ4.91 (m, 4 H), 4.45ꢀ3.98 (m, 2 H), 3.83 (d,
J = 4.0 Hz, 1 H), 3.40 (s, 3 H), 3.27 (s, 3 H), 3.10 (s, 3 H), 2.89ꢀ2.83 (m, 1 H),
2.66ꢀ2.40 (m, 3 H), 2.23ꢀ2.19 (m, 3 H), 1.70 (s, 3 H), 0.17ꢀ0 (m, 18 H); 13C
NMR (100 MHz, CDCl3): d 210.3, 206.6, 197.9, 169.5, 167.0, 139.3, 139.0, 136.6,
132.0, 130.8, 127.4, 126.7, 126.4, 101.7, 86.6, 84.3, 83.2, 78.0, 75.7, 74.3, 67.7,
58.1, 57.8, 56.1, 51.4, 45.8, 44.1, 41.4, 40.8, 40.6, 40.2, 38.2, 36.8, 35.7, 34.0,
33.9, 33.0, 32.0, 30.1, 27.1, 26.6, 26.3, 26.0, 25.9, 25.8, 25.7, 24.9, 22.0, 21.0,
19.3, 18.2, 18.1, 15.7, 15.5, 14.0, 13.9, 11.0, ꢀ2.5, ꢀ3.2, ꢀ4.5, ꢀ4.6, ꢀ4.7, ꢀ4.9;
HR-ESIMS calcd for C69H121O13NSi3Na [M + Na]+ 1278.8043, found 1278.8049.
(3)To a solution of silyl derivative 2 (1.20 g, 0.95 mmol) in CH2Cl2 (15 mL) at
ꢀ68 °C was bubbled O3 until the blue color persisted. 35% H2O2 (15 mL) was
then added and the stirring was continued for another 14 h at rt. The solution
was diluted with EtOAc (120 mL), washed with brine, dried and concentrated
to afford an oil, which was purified using silica gel chromatography (hexane-
EtOAc, 4:1, then CH2Cl2-MeOH, 20:1) to give an epimeric mixture (710 mg) as a
white solid. The epimeric mixture from the ozonolysis reaction stated above
(210 mg, 0.26 mmol) was dissolved in anhydrous THF (2 mL), and then added
to a freshly prepared Wittig reagent at 0 °C, which in turn was prepared from
CH3PPh3þBrꢀ (560 mg, 1.57 mmol) and t-BuOK (140 mg, 1.25 mmol) in
anhydrous THF (5 mL). After stirring for 10 min, the reaction mixture was
quenched with 5% HCl. The resulting mixture was diluted with EtOAc (60 mL),
washed with brine, dried and concentrated. The crude residue was purified by
silica gel chromatography (toluene-EtOAc, 4:1, then toluene-EtOAc-AcOH,
4:1:0.025) to provide 3 (124 mg, 54%) as a white solid: 1H NMR (400 MHz,
CDCl3): 5.84ꢀ5.68 (m, 1 H), 5.29ꢀ4.89 (m, 4 H), 4.42ꢀ4.29 (m, 1 H), 4.06ꢀ3.85
(m, 1 H), 3.40 (s, 3 H), 2.93ꢀ2.48 (m, 4 H), 2.34ꢀ2.13 (m, 4 H), 0.87 (s, 9 H),
0.19ꢀ0.02 (m, 12 H); 13C NMR (100 MHz, CDCl3): d 197.7, 197.4, 176.0, 175.4,
169.7, 169.2, 167.2, 166.4, 135.3, 134.3, 117.2, 116.6, 102.0, 101.6, 84.5, 84.4,
75.7, 75.2, 74.6, 70.5, 70.3, 58.1, 58.0, 56.6, 56.5, 51.8, 44.4, 40.3, 38.9, 38.6,
36.5, 36.4, 36.2, 36.0, 35.1, 34.7, 33.9, 33.34, 33.25, 33.1, 31.4, 30.9, 30.6, 29.7,
29.4, 27.6, 27.3, 26.84, 26.76, 26.6, 26.3, 25.9, 24.8, 24.4, 22.8, 21.3, 20.7, 19.4,
18.2, 15.82, 15.78, 15.3, 14.9, ꢀ2.5, ꢀ2.7, ꢀ2.9, ꢀ3.0, ꢀ4.5, ꢀ4.7; HR-ESIMS
calcd for C42H75O10NSi2Na [M + Na]+ 832.4827, found 832.4833.
In conclusion, a simple and highly efficient process for the prep-
aration of FKBD from rapamycin has been developed using a one-
pot ozonolysis and Baeyer–Villiger reaction as the key step.
Acknowledgment
This work was supported by the NIH Director’s Pioneer Award
(DP1OD006795 to JOL). We are grateful to Drs. Zufeng Guo, Man-
isha Das and members of the Liu Lab for helpful discussions. We
thank Drs. Carol Greider and Paul Talalay for generous provision
of temporary lab space for this work.
References and notes
1. Liu, J.; Farmer, J. D., Jr.; Lane, W. S.; Friedman, J.; Weissman, I.; Schreiber, S. L.
Cell 1991, 66, 807–815.
2. Heitman, J.; Movva, N. R.; Hall, M. N. Science 1991, 253, 905–909.
3. Brown, E. J.; Albers, M. W.; Shin, T. B.; Ichikawa, K.; Keith, C. T.; Lane, W. S.;
Schreiber, S. L. Nature 1994, 369, 756–758.
4. Sabatini, D. M.; Erdjument-Bromage, H.; Lui, M.; Tempst, P.; Snyder, S. H. Cell
1994, 78, 35–43.
5. Chen, Y.; Chen, H.; Rhoad, A. E.; Warner, L.; Caggiano, T. J.; Failli, A.; Zhang, H.;
Hsiao, C. L.; Nakanishi, K.; Molnar-Kimber, K. L. Biochem. Biophys. Res. Commun.
1994, 203, 1–7.
6. Bierer, B. E.; Somers, P. K.; Wandless, T. J.; Burakoff, S. J.; Schreiber, S. L. Science
1990, 250, 556–559.
7. Griffith, J. P.; Kim, J. L.; Kim, E. E.; Sintchak, M. D.; Thomson, J. A.; Fitzgibbon, M.
J.; Fleming, M. A.; Caron, P. R.; Hsiao, K.; Navia, M. A. Cell 1995, 82, 507–522.
8. Kissinger, C. R.; Parge, H. E.; Knighton, D. R.; Lewis, C. T.; Pelletier, L. A.;
Tempczyk, A.; Kalish, V. J.; Tucker, K. D.; Showalter, R. E.; Moomaw, E. W., et al
Nature 1995, 378, 641–644.
9. Choi, J.; Chen, J.; Schreiber, S. L.; Clardy, J. Science 1996, 273, 239–242.
10. Holt, D. A.; Juengo, J. I.; Yamashita, D. S.; Oh, H.; Konialian, A. L.; Yen, H.;
Rozamus, L. W.; Brandt, M.; Bossard, M. J.; Levy, M. A.; Eggleston, D. S.; Liang, J.;
Schultz, L. W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1993, 115, 9925–9938.
11. Chakraborty, T. K.; Weber, H. P.; Nicolaou, K. C. Chem. Biol. 1995, 2, 157–161.
12. Goulet, M. T.; Boger, J. Tetrahedron Lett. 1990, 31, 4845–4848.
13. Moulines, J.; Bats, J.-P.; Lamidey, A.-M.; Silva, N. D. Helv. Chim. Acta 2004, 87,
2695–2705.
(4) To a mixture of CF3CO2H (0.8 mL) and H2O (0.2 mL) at 0 °C was added olefin
3 (32 mg, 0.040 mmol). After stirring for 2 h, the mixture was concentrated in
vacuo and purified by silica gel chromatography (CH2Cl2–MeOH–AcOH,
20:1:0.2) to offer 4 (22 mg, 96%) as a white solid: 1H NMR (400 MHz, CDCl3):
5.82ꢀ5.68 (m, 1 H), 5.27ꢀ4.90 (m, 4 H), 4.45ꢀ4.32 (m, 1 H), 4.02ꢀ3.85 (m, 1
H), 3.40 (s, 3 H), 2.99ꢀ2.94 (m, 1 H), 2.65ꢀ2.51 (m, 2 H); 13C NMR (100 MHz,
CDCl3): d 197.8, 194.8, 175.1, 175.0, 171.0, 170.0, 169.8, 169.34, 169.26, 167.6,
166.8, 165.7, 135.1, 134.8, 134.3, 117.4, 117.1, 116.7, 99.3, 98.5, 97.7, 84.4,
75.7, 75.2, 75.0, 73.9, 70.2, 70.1, 56.5, 56.4, 51.5, 44.5, 43.1, 41.5, 41.4, 40.2,
39.1, 38.9, 35.1, 35.0, 34.4, 34.3, 34.1, 33.4, 33.2, 31.3, 30.8, 30.6, 29.7, 27.5,
27.1, 26.6, 26.4, 26.3, 25.0, 24.6, 24.4, 21.1, 20.9, 20.8, 16.7, 16.1, 15.9, 15.7,
15.3, 15.1, 15.0; HR-ESIMS calcd for C30H47O10NNa [M + Na]+ 604.3098, found
604.3093.
14. Note: Shortly after the addition of H2O2 the reaction mixture attains a pH of 2.
Oxidative cleavage of the ozonides at C-17, C-19 and C-21 ought to produce
two equivalents of oxalic acid. With the excess of hydrogen peroxide around
peroxalic acid can be generated in situ and it can mediate the Baeyer–Villiger
18. Lyons, W. E.; George, E. B.; Dawson, T. M.; Steiner, J. P.; Snyder, S. H. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 3191–3195.
rearrangements. We have observed this to be
a convenient and efficient
19. Brillantes, A. B.; Ondrias, K.; Scott, A.; Kobrinsky, E.; Ondriasova, E.; Moschella,
M. C.; Jayaraman, T.; Landers, M.; Ehrlich, B. E.; Marks, A. R. Cell 1994, 77, 513–
523.
20. Shou, W.; Aghdasi, B.; Armstrong, D. L.; Guo, Q.; Bao, S.; Charng, M. J.; Mathews,
L. M.; Schneider, M. D.; Hamilton, S. L.; Matzuk, M. M. Nature 1998, 391, 489–
492.
21. Xin, H. B.; Senbonmatsu, T.; Cheng, D. S.; Wang, Y. X.; Copello, J. A.; Ji, G. J.;
Collier, M. L.; Deng, K. Y.; Jeyakumar, L. H.; Magnuson, M. A.; Inagami, T.;
Kotlikoff, M. I.; Fleischer, S. Nature 2002, 416, 334–338.
22. Ahearn, I. M.; Tsai, F. D.; Court, H.; Zhou, M.; Jennings, B. C.; Ahmed, M.;
Fehrenbacher, N.; Linder, M. E.; Philips, M. R. Mol. Cell 2011, 41, 173–185.
process rather than isolating the ozonolysis product and subjecting to Baeyer–
Villiger reaction using peracetic acid or mCPBA.
15. Getty, S. J.; Berson, J. A. J. Am. Chem. Soc. 1990, 112, 1652–1653.
16. Wong, J. C. Y.; Lacombe, P.; Sturino, C. F. Tetrahedron Lett. 1999, 40, 8751–8754.
17. Synthetic Procedures: (2) To a solution of rapamycin (999 mg, 1.09 mmol) and
anhydrous Et3N (0.6 mL, 4.45 mmol) in anhydrous CH2Cl2 (3 mL) was added
TBSOTf (0.85 mL, 3.79 mmol). The solution was stirred for 1 h at rt, and then
quenched with H2O. The resulting mixture was diluted with EtOAc (120 mL),
washed with saturated NaHCO3 and brine, dried and concentrated in vacuo.
The crude residue was subjected to silica gel column chromatography (hexane-
EtOAc, 8:1) to afford 2 (1.37 g, 100%) as a yellow solid: 1H NMR (400 MHz,