During the course of our endeavor on NHC-
organocatalysis,7 we recently disclosed an NHC-catalyzed
unique cascade reaction involving the hydroacylation8 of
unactivated alkynes followed by an intermolecular Stetter
reaction leading to the formation of chromanones with a
valuable 1,4-diketone moiety.9 The chromanone forma-
tion took place in spite of various selectivity issues includ-
ing the undesired benzoin and Stetter pathways, and the
key to success was the right choice of NHC and base. It was
surmised that when the reaction is carried out using a
relatively strong base, the initially formed chromanone will
be poised for a retro-Michael reaction leading to phenol A,
which upon a 1,3-H shift to B followed by an intramole-
cular oxa-Michael reaction leads to the formation of 2,2-
disubstituted benzofuranones (Scheme 1).10 Herein, we
report a unique cascade reaction comprising an NHC-
catalyzed hydroacylation followed by an intermolecular
Stetter reaction and a subsequent base-catalyzed chroma-
none to benzofuranone rearrangement (Scheme 2).11,12
Our present study commenced with the NHC/base-
catalyzed reaction of 2-propargyloxy 1-naphthaldehyde
Scheme 1. Cascade Catalysis Using NHC
Scheme 2. Proposed Mechanism of Base-Catalyzed Rearran-
gement of Chromanones to Benzofuranones
(4) (a) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876.
(b) Moore, J. L.; Kerr, M. S.; Rovis, T. Tetrahedron 2006, 62, 11477.
(c) He, J.; Zheng, J.; Liu, J.; She, X.; Pan, X. Org. Lett. 2006, 8, 4637.
(5) For recent reviews on NHC-organocatalysis, see: (a) Nair, V.;
Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar,
V. Chem. Soc. Rev. 2011, 40, DOI: 10.1039/c1cs15139h. (b) Biju, A. T.;
Kuhl, N. Glorius, F. Acc. Chem. Res. 2011, 44, DOI: 10.1021/ar2000716.
(c) Hirano, K.; Piel, I.; Glorius, F. Chem. Lett. 2011, 40, 786. (d) Chiang,
P.-C.; Bode, J. W. In RSC Catalysis Series; Royal Society of Chemistry:
Cambridge, 2010; p 339. (e) Moore, J. L.; Rovis, T. Top. Curr. Chem.
2009, 291, 77. (f) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica
Acta 2009, 42, 55. (g) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev.
ꢀ
2007, 107, 5606. (h) Marion, N.; Dıez-Gonzalez, S.; Nolan, S. P. Angew.
Chem., Int. Ed. 2007, 46, 2988. For a recent review on physicochemical
(1a) with 4-chlorobenzaldehyde (2a) leading to the forma-
tion of chromanone 3a and benzofuranone 4a. After a
series of experiments, we found that treatment of 1a and 2a
with the carbene generated by the deprotonation of the
thiazolium salt 513 with 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU) resulted in the exclusive formation of the benzo-
€
properties of NHCs, see: (i) Droge, T.; Glorius, F. Angew. Chem., Int.
Ed. 2010, 49, 6940.
(6) Filloux, C. M.; Lathrop, S. P.; Rovis, T. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 20666.
(7) (a) Biju, A. T.; Padmanaban, M.; Wurz, N. E.; Glorius, F. Angew.
Chem., Int. Ed. 2011, 50, 8412. (b) Bugaut, X.; Liu, F.; Glorius, F. J. Am.
Chem. Soc. 2011, 133, 8130. (c) Piel, I.; Steinmetz, M.; Hirano, K.;
€
Frohlich, R.; Grimme, S.; Glorius, F. Angew.Chem., Int. Ed. 2011, 50,
1
4983. (d) Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1410. (e) Padmanaban, M.; Biju, A. T.; Glorius, F. Org.
Lett. 2011, 13, 98. (f) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47,
573. (g) Biju, A. T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 9761.
(h) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009,
131, 14190. For a recent highlight review, see: (i) DiRocco, D. A.; Rovis,
T. Angew. Chem., Int. Ed. 2011, 50, 7982.
furanone 4a in 94% yield (based on H NMR spectro-
scopy, Table 1, entry 1). Notably, in contrast to this NHC,
other common NHCs derived from precursors 6À9 are less
effective (entries 2À5). The role of the base was found to be
crucial for the chromanoneÀbenzofuranone rearrange-
ment, and other bases including K2CO3, KOt-Bu, Et3N,
and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) furnished
the benzofuranone in reduced yields (entries 6À9). Sol-
vents other than THF resulted in inferior selectivity and
hence are not beneficial (entries 10 and 11). Additionally, 5
and 10 mol % loadings of 5 and DBU, respectively,
reduced the yield of 4a as it affected the rearrangement
step (entry 12). Gratifyingly, reducing the loading of 5 to 5
mol % and increasing the DBU amount to 20 mol %
maintained the reactivity and afforded the desired benzo-
furanone in 90% isolated yield (entry 13).
(8) For a review on transition-metal catalyzed hydroacylations, see:
Willis, M. C. Chem. Rev. 2010, 110, 725.
(9) (a) Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
5970. For the hydroacylation of activated alkynes, see: (b) Vedachalam, S.;
Wong, Q.-L.; Maji, B.; Zeng, J.; Ma, J.; Liu, X.-W. Adv. Synth. Catal. 2011,
353, 219. For the hydroacylation of nitriles, see: (c) Vedachalam, S.; Zeng,
J.; Gorityala, B. K.; Antonio, M.; Liu, X.-W. Org. Lett. 2010, 12, 352. For a
related hydroacylation of enol ethers, see: (d) He, J.; Tang, S.; Liu, J.; Su, Y.;
Pan, X.; She, X. Tetrahedron 2008, 64, 8797.
(10) For a base induced rearrangement of aminochromanones to
ꢀ
2-aminobenzofuranones, see: Patonay-Peli, E.; Litkei, G.; Patanay, T.
Synthesis 1990, 511.
(11) (a) For recent reviews on cascade catalysis, see: MacMillan,
D. W. C.; Walji, A. M. Synlett 2007, 10, 1477. (b) Chapman, C. J.; Frost,
C. G. Synthesis 2007, 1. (c) Nicolaou, K. C.; Edmonds, D. J.; Bulger,
P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (d) Wasilke, J. C.; Obrey,
S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001.
(12) For the application of NHCs in cascade catalysis, see:
(a) Ozboya, K. E.; Rovis, T. Chem. Sci. 2011, 2, 1835. (b) Lathrop,
S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628. (c) Ye, W.; Cai, G.;
Zhuang, Z.; Jia, X.; Zhai, H. Org. Lett. 2005, 7, 3769. (d) Stetter, H.;
Kuhlmann, H. Org. React. 1991, 40, 407.
€
(13) (a) Piel, I.; Pawelczyk, M. D.; Hirano, K.; Frohlich, R.; Glorius,
F. Eur. J. Org. Chem. 2011, DOI: 10.1002/ejoc.201100870. (b) Lebeuf,
R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243. (c) Hirano, K.; Piel,
I.; Glorius, F. Adv. Synth. Catal. 2008, 350, 984.
Org. Lett., Vol. 13, No. 20, 2011
5625