1746
I. Yavari et al.
LETTER
(2) (a) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000,
Table 2 Optimization Reaction Conditions for Aryl Bromides
1045. (b) Oliva, A.; Ellis, M.; Fiocchi, L.; Menta, E.;
Krapcho, A. P. J. Heterocycl. Chem. 2000, 37, 47.
(c) Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607.
(d) Yavari, I.; Khalili, G.; Mirzaei, A. Helv. Chim. Acta
2010, 93, 277.
Catalyst Solvent
Yield (%)Catalysta
Solvent
MeCN
MeCN
MeCN
MeCN
Yield (%)b
CuI
CuI
CuI
CuI
CuI
CuI
DMSO
DMF
73
61
15
70
90
78
Cu
n.r
CuCl
CuBr
Cu2O
78
(3) (a) Duthale, R. O. Angew. Chem. Int. Ed. 2003, 42, 975.
(b) Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126,
5676. (c) Saaby, S.; Bella, M.; Jorgensen, K. A. J. Am.
Chem. Soc. 2004, 126, 8120.
(4) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
(5) Demers, J. P.; Klaubert, D. H. Tetrahedron Lett. 1987, 28,
4933.
(6) Metallinos, C.; Nerdinger, S.; Snieckus, V. Org. Lett. 1999,
1, 1183.
(7) Velarde-Ortiz, R.; Guijarro, A.; Rieke, R. D. Tetrahedron
Lett. 1998, 39, 9157.
(8) (a) Bombek, S.; Lenarsic, R.; Kocevar, M.; Saint-Jalmes, L.;
Desmurs, J.-R.; Polanc, S. Chem. Commun. 2002, 1494.
(b) Kinart, W. J.; Kinart, C. M. J. Organomet. Chem. 2003,
665, 233.
(9) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3,
3803.
(10) Uemura, T.; Chatani, N. J. Org. Chem. 2005, 70, 8631.
(11) Typical Procedure for the Preparation of Aryl
Hydrazides 3a–i
toluene
THF
32
28
MeCN
dioxane
Cu(OAc)2 MeCN
trace
CuCl2
CuIc
MeCN
MeCN
trace
80
a 10 mol% catalyst unless stated otherwise; Phen 20 mol%.
b Reaction time 20 h.
c 5 mol% catalyst, reaction time was 26 h.
Ar
CO2R
CuI, Phen
N
CO2R
R
N
+
ArBr
Ar
N
+
RO2C
Ar
3j 3-Tol
3k 3-Tol
3l 1-naphthyl
3m 1-naphthyl
3n 4-NCC6H4
3o 2-O2NC6H4
3p 2-O2NC6H4
3q 3-F3CC6H4
3r 3-F3CC6H4
3s 2-thienyl
N
Ph3P
RO2C
MeCN, reflux
H
R
1a
Et
1b i-Pr
2g 3-Tol
Et
i-Pr
Et
i-Pr
i-Pr
Et
i-Pr
Et
i-Pr
i-Pr
2h 1-naphthyl
2i 4-NCC6H4
2j 2-O2NC6H4
2k 3-F3CC6H4
2l 2-thienyl
To a stirred solution of aryl iodide (1 mmol) and Ph3P (0.263
g, 1 mmol) in THF (2 mL), was added CuI (9 mg, 0.05
mmol) in one portion. The mixture was stirred at r.t. for 30
min under N2. Then, the DAAD (1.2 mmol) was added to the
reaction mixture, which was stirred at r.t. for 18 h under
nitrogen. After removal of the solvent, the residue was
purified by chromatography (silica gel, hexane–EtOAc =
5:1) to give hydrazides 3a–i.
Scheme 2
Representative Analytical Data
Diethyl 1-Phenyl-hydrazine-1,2-dicarboxylate (3a)
Colorless solid, mp 81–83 °C; yield 0.23 g (91%). IR (KBr):
n
The optimized reaction conditions given above were com-
patible with the presence of functional groups, such as
CN, NO2, CF3, OMe, and halogen, on the aromatic ring of
the aryl halide. Various aryl bromides afforded the corre-
sponding aryl hydrazides in good to excellent yields.
max = 3280, 1599, 1518, 1340, 1100 cm–1. 1H NMR (500.1
MHz, CDCl3): d = 1.27 (3 H, t, 3J = 7.0 Hz, Me), 1.28 (3 H,
t, 3J = 7.0 Hz, Me), 4.22 (4 H, m, 2 CH2O), 7.09 and 7.19 (1
H, br s, NH), 7.20 (1 H, t, 3J = 7.1 Hz), 7.33 (2 H, t, 3J = 7.6
Hz), 7.42 (2 H, d, 3J = 7.4 Hz). 13C NMR (125.7 MHz,
CDCl3): d = 14.4 (Me), 14.5 (Me), 62.3 (CH2O), 63.0
(CH2O), 124.3 (2 CH, br), 126.3 (2 CH), 128.6 (CH), 141.7
(C), 155.0 (C=O), 156.4 (C=O). MS: m/z (%) = 252 (1)
[M+], 180 (10), 152 (100), 134 (16), 108 (22), 107 (69), 106
(14), 91 (17), 77 (32). Anal. Calcd (%) for C12H16N2O4
(252.27): C, 57.13; H, 6.39; N, 11.10. Found: C, 57.59; H,
6.44; N, 11.23.
In summary, the Mitsonubo reagent system has been em-
ployed as a potential anionic nucleophile in a reaction in-
volving aryl halides to produce aryl hydrazides. Aryl
bromides and iodides with electron-withdrawing as well
as electron-releasing groups undergo these coupling reac-
tions in good yields. In this methodology, the optimized
conditions have been developed for aryl iodides at room
temperature and for aryl bromides at 60–75 °C. The ad-
vantages of this methodology are the use of the air-stable,
inexpensive CuI catalyst under mild reaction conditions.
Diisopropyl 1-Phenyl-hydrazine-1,2-dicarboxylate (3b)
Colorless solid, mp 90–92 °C; yield 0.25 g (92%). IR (KBr);
n
max = 3241, 1569, 1500, 1325, 1110 cm–1. 1H NMR (500.1
MHz, CDCl3): d = 1.26 (6 H, t, 3J = 6.6 Hz, 2 Me), 1.29 (6
H, t, 3J = 6.8 Hz, 2 Me), 5.08–5.10 (2 H, m, CHO), 6.96 and
7.12 (1 H, br s, NH), 7.20 (1 H, t, 3J = 7.1 Hz), 7.36 (2 H, t,
3J = 7.1 Hz), 7.46 (2 H, d, 3J = 7.4 Hz). 13C NMR (125.7
MHz, CDCl3): d = 21.0 (2 Me), 21.7 (2 Me), 70.0 (CHO),
70.7 (CHO), 121.2 (2 CH, br), 125.9 (2 CH), 128.9 (CH),
139.3 (C), 154.7 (C=O), 156.0 (C=O). MS: m/z (%) = 280
(1) [M+], 194 (16), 152 (100), 134 (11), 108 (19), 107 (65),
106 (12), 91 (14), 77 (25). Anal. Calcd (%) for C14H20N2O4
(280.32): C, 59.99; H, 7.19; N, 9.99. Found: C, 59.69; H,
7.24; N, 9.93..
Supporting Information for this article is available online at
References and Notes
(1) (a) Enders, E. In Methoden der Organischen Chemie, Vol.
10/2; Stroh, R., Ed.; Thieme: Stuttgart, 1967, 546.
(b) Dekeyser, M.; McDonald, P. T.; Angle, G. W. Jr.
J. Agric. Food Chem. 1994, 42, 1358. (c) Reich, M. F.;
Fabio, P. F.; Lee, V. J.; Kuck, N. A.; Testa, R. T. J. Med.
Chem. 1989, 32, 2474.
(12) Typical Procedure for the Preparation of Aryl
Hydrazides 3j–s
To a stirred solution of aryl bromide (1 mmol), Ph3P (0.263
g, 1 mmol), and Phen (0.036 g, 20 mol%) in MeCN (2 mL)
Synlett 2011, No. 12, 1745–1747 © Thieme Stuttgart · New York